Documentation

Query using conditional logic

Flux provides if, then, and else conditional expressions that allow for powerful and flexible Flux queries.

If you’re just getting started with Flux queries, check out the following:

Conditional expression syntax
// Pattern
if <condition> then <action> else <alternative-action>

// Example
if color == "green" then "008000" else "ffffff"

Conditional expressions are most useful in the following contexts:

  • When defining variables.
  • When using functions that operate on a single row at a time ( filter(), map(), reduce() ).

Evaluating conditional expressions

Flux evaluates statements in order and stops evaluating once a condition matches.

For example, given the following statement:

if r._value > 95.0000001 and r._value <= 100.0 then
    "critical"
else if r._value > 85.0000001 and r._value <= 95.0 then
    "warning"
else if r._value > 70.0000001 and r._value <= 85.0 then
    "high"
else
    "normal"

When r._value is 96, the output is “critical” and the remaining conditions are not evaluated.

Examples

Conditionally set the value of a variable

The following example sets the overdue variable based on the dueDate variable’s relation to now().

dueDate = 2019-05-01
overdue = if dueDate < now() then true else false

Create conditional filters

The following example uses an example metric dashboard variable to change how the query filters data. metric has three possible values:

  • Memory
  • CPU
  • Disk
from(bucket: "example-bucket")
    |> range(start: -1h)
    |> filter(
        fn: (r) => if v.metric == "Memory" then
            r._measurement == "mem" and r._field == "used_percent"
        else if v.metric == "CPU" then
            r._measurement == "cpu" and r._field == "usage_user"
        else if v.metric == "Disk" then
            r._measurement == "disk" and r._field == "used_percent"
        else
            r._measurement != "",
    )

Conditionally transform column values with map()

The following example uses the map() function to conditionally transform column values. It sets the level column to a specific string based on _value column.

from(bucket: "example-bucket")
    |> range(start: -5m)
    |> filter(fn: (r) => r._measurement == "mem" and r._field == "used_percent")
    |> map(
        fn: (r) => ({r with
            level: if r._value >= 95.0000001 and r._value <= 100.0 then
                "critical"
            else if r._value >= 85.0000001 and r._value <= 95.0 then
                "warning"
            else if r._value >= 70.0000001 and r._value <= 85.0 then
                "high"
            else
                "normal",
        }),
    )
from(bucket: "example-bucket")
    |> range(start: -5m)
    |> filter(fn: (r) => r._measurement == "mem" and r._field == "used_percent")
    |> map(
        fn: (r) => ({
            // Retain all existing columns in the mapped row
            r with
            // Set the level column value based on the _value column
            level: if r._value >= 95.0000001 and r._value <= 100.0 then
                "critical"
            else if r._value >= 85.0000001 and r._value <= 95.0 then
                "warning"
            else if r._value >= 70.0000001 and r._value <= 85.0 then
                "high"
            else
                "normal",
        }),
    )

Conditionally increment a count with reduce()

The following example uses the aggregateWindow() and reduce() functions to count the number of records in every five minute window that exceed a defined threshold.

threshold = 65.0

data = from(bucket: "example-bucket")
    |> range(start: -1h)
    |> filter(fn: (r) => r._measurement == "mem" and r._field == "used_percent")
    |> aggregateWindow(
        every: 5m,
        fn: (column, tables=<-) => tables
            |> reduce(
                identity: {above_threshold_count: 0.0},
                fn: (r, accumulator) => ({
                    above_threshold_count: if r._value >= threshold then
                        accumulator.above_threshold_count + 1.0
                    else
                        accumulator.above_threshold_count + 0.0,
                }),
            ),
    )
threshold = 65.0

from(bucket: "example-bucket")
    |> range(start: -1h)
    |> filter(fn: (r) => r._measurement == "mem" and r._field == "used_percent")
    // Aggregate data into 5 minute windows using a custom reduce() function
    |> aggregateWindow(
        every: 5m,
        // Use a custom function in the fn parameter.
        // The aggregateWindow fn parameter requires 'column' and 'tables' parameters.
        fn: (column, tables=<-) => tables
            |> reduce(
                identity: {above_threshold_count: 0.0},
                fn: (r, accumulator) => ({
                    // Conditionally increment above_threshold_count if
                    // r.value exceeds the threshold
                    above_threshold_count: if r._value >= threshold then
                        accumulator.above_threshold_count + 1.0
                    else
                        accumulator.above_threshold_count + 0.0,
                }),
            ),
    )

Was this page helpful?

Thank you for your feedback!


The future of Flux

Flux is going into maintenance mode. You can continue using it as you currently are without any changes to your code.

Read more

InfluxDB 3 Open Source Now in Public Alpha

InfluxDB 3 Open Source is now available for alpha testing, licensed under MIT or Apache 2 licensing.

We are releasing two products as part of the alpha.

InfluxDB 3 Core, is our new open source product. It is a recent-data engine for time series and event data. InfluxDB 3 Enterprise is a commercial version that builds on Core’s foundation, adding historical query capability, read replicas, high availability, scalability, and fine-grained security.

For more information on how to get started, check out:

InfluxDB Cloud powered by TSM