Documentation

K8sAutoscaleNode

The k8sAutoscale node triggers autoscale events for a resource on a Kubernetes cluster. The node also outputs points for the triggered events.

Example:

// Target 100 requests per second per host
var target = 100.0
var min = 1
var max = 100
var period = 5m
var every = period
stream
  |from()
    .measurement('requests')
    .groupBy('host', 'deployment')
    .truncate(1s)
  |derivative('value')
    .as('requests_per_second')
    .unit(1s)
    .nonNegative()
  |groupBy('deployment')
  |sum('requests_per_second')
    .as('total_requests')
  |window()
    .period(period)
    .every(every)
  |mean('total_requests')
    .as('total_requests')
  |k8sAutoscale()
    // Get the name of the deployment from the 'deployment' tag.
    .resourceNameTag('deployment')
    .min(min)
    .max(max)
    // Set the desired number of replicas based on target.
    .replicas(lambda: int(ceil("total_requests" / target)))
  |influxDBOut()
    .database('deployments')
    .measurement('scale_events')
    .precision('s')

The above example computes the requests per second by deployment and host. Then the total_requests per second across all hosts is computed per deployment. Using the mean of the total_requests over the last time period a desired number of replicas is computed based on the target number of request per second per host.

If the desired number of replicas has changed, Kapacitor makes the appropriate API call to Kubernetes to update the replicas spec.

Any time the k8sAutoscale node changes a replica count, it emits a point. The point is tagged with the namespace, kind and resource name, using the NamespaceTag, KindTag, and ResourceTag properties respectively. In addition the group by tags will be preserved on the emitted point. The point contains two fields: old, and new representing change in the replicas.

Available Statistics:

  • increase_events: number of times the replica count was increased.
  • decrease_events: number of times the replica count was decreased.
  • cooldown_drops: number of times an event was dropped because of a cooldown timer.
  • errors: number of errors encountered, typically related to communicating with the Kubernetes API.

Constructor

Chaining MethodDescription
k8sAutoscale ( )Create a node that can trigger autoscale events for a kubernetes cluster.

Property Methods

SettersDescription
cluster ( value string)Cluster is the name of the Kubernetes cluster to use.
currentField ( value string)CurrentField is the name of a field into which the current replica count will be set as an int. If empty no field will be set. Useful for computing deltas on the current state.
decreaseCooldown ( value time.Duration)Only one decrease event can be triggered per resource every DecreaseCooldown interval.
increaseCooldown ( value time.Duration)Only one increase event can be triggered per resource every IncreaseCooldown interval.
kind ( value string)Kind is the type of resources to autoscale. Currently only “deployments”, “replicasets” and “replicationcontrollers” are supported. Default: “deployments”
kindTag ( value string)KindTag is the name of a tag to use when tagging emitted points with the kind. If empty the point will not be tagged with the resource. Default: kind
max ( value int64)The maximum scale factor to set. If 0 then there is no upper limit. Default: 0, a.k.a no limit.
min ( value int64)The minimum scale factor to set. Default: 1
namespace ( value string)Namespace is the namespace of the resource, if empty the default namespace will be used.
namespaceTag ( value string)NamespaceTag is the name of a tag to use when tagging emitted points with the namespace. If empty the point will not be tagged with the resource. Default: namespace
quiet ( )Suppress all error logging events from this node.
replicas ( value ast.LambdaNode)Replicas is a lambda expression that should evaluate to the desired number of replicas for the resource.
resourceName ( value string)ResourceName is the name of the resource to autoscale.
resourceNameTag ( value string)ResourceNameTag is the name of a tag that names the resource to autoscale.
resourceTag ( value string)ResourceTag is the name of a tag to use when tagging emitted points the resource. If empty the point will not be tagged with the resource. Default: resource

Chaining Methods

Alert, Barrier, Bottom, ChangeDetect, Combine, Count, CumulativeSum, Deadman, Default, Delete, Derivative, Difference, Distinct, Ec2Autoscale, Elapsed, Eval, First, Flatten, GroupBy, HoltWinters, HoltWintersWithFit, HttpOut, HttpPost, InfluxDBOut, Join, K8sAutoscale, KapacitorLoopback, Last, Log, Mean, Median, Mode, MovingAverage, Percentile, Sample, Shift, Sideload, Spread, StateCount, StateDuration, Stats, Stddev, Sum, SwarmAutoscale, Top, Trickle, Union, Where, Window


Properties

Property methods modify state on the calling node. They do not add another node to the pipeline, and always return a reference to the calling node. Property methods are marked using the . operator.

Cluster

Cluster is the name of the Kubernetes cluster to use.

k8sAutoscale.cluster(value string)

CurrentField

CurrentField is the name of a field into which the current replica count will be set as an int. If empty no field will be set. Useful for computing deltas on the current state.

Example:

    |k8sAutoscale()
        .currentField('replicas')
        // Increase the replicas by 1 if the qps is over the threshold
        .replicas(lambda: if("qps" > threshold, "replicas" + 1, "replicas"))
k8sAutoscale.currentField(value string)

DecreaseCooldown

Only one decrease event can be triggered per resource every DecreaseCooldown interval.

k8sAutoscale.decreaseCooldown(value time.Duration)

IncreaseCooldown

Only one increase event can be triggered per resource every IncreaseCooldown interval.

k8sAutoscale.increaseCooldown(value time.Duration)

Kind

Kind is the type of resources to autoscale. Currently only “deployments”, “replicasets” and “replicationcontrollers” are supported. Default: “deployments”

k8sAutoscale.kind(value string)

KindTag

KindTag is the name of a tag to use when tagging emitted points with the kind. If empty the point will not be tagged with the resource. Default: kind

k8sAutoscale.kindTag(value string)

Max

The maximum scale factor to set. If 0 then there is no upper limit. Default: 0, a.k.a no limit.

k8sAutoscale.max(value int64)

Min

The minimum scale factor to set. Default: 1

k8sAutoscale.min(value int64)

Namespace

Namespace is the namespace of the resource, if empty the default namespace will be used.

k8sAutoscale.namespace(value string)

NamespaceTag

NamespaceTag is the name of a tag to use when tagging emitted points with the namespace. If empty the point will not be tagged with the resource. Default: namespace

k8sAutoscale.namespaceTag(value string)

Quiet

Suppress all error logging events from this node.

k8sAutoscale.quiet()

Replicas

Replicas is a lambda expression that should evaluate to the desired number of replicas for the resource.

k8sAutoscale.replicas(value ast.LambdaNode)

ResourceName

ResourceName is the name of the resource to autoscale.

k8sAutoscale.resourceName(value string)

ResourceNameTag

ResourceNameTag is the name of a tag that names the resource to autoscale.

k8sAutoscale.resourceNameTag(value string)

ResourceTag

ResourceTag is the name of a tag to use when tagging emitted points the resource. If empty the point will not be tagged with the resource. Default: resource

k8sAutoscale.resourceTag(value string)

Chaining Methods

Chaining methods create a new node in the pipeline as a child of the calling node. They do not modify the calling node. Chaining methods are marked using the | operator.

Alert

Create an alert node, which can trigger alerts.

k8sAutoscale|alert()

Returns: AlertNode

Barrier

Create a new Barrier node that emits a BarrierMessage periodically.

One BarrierMessage will be emitted every period duration.

k8sAutoscale|barrier()

Returns: BarrierNode

Bottom

Select the bottom num points for field and sort by any extra tags or fields.

k8sAutoscale|bottom(num int64, field string, fieldsAndTags ...string)

Returns: InfluxQLNode

ChangeDetect

Create a new node that only emits new points if different from the previous point.

k8sAutoscale|changeDetect(field string)

Returns: ChangeDetectNode

Combine

Combine this node with itself. The data is combined on timestamp.

k8sAutoscale|combine(expressions ...ast.LambdaNode)

Returns: CombineNode

Count

Count the number of points.

k8sAutoscale|count(field string)

Returns: InfluxQLNode

CumulativeSum

Compute a cumulative sum of each point that is received. A point is emitted for every point collected.

k8sAutoscale|cumulativeSum(field string)

Returns: InfluxQLNode

Deadman

Helper function for creating an alert on low throughput, a.k.a. deadman’s switch.

  • Threshold: trigger alert if throughput drops below threshold in points/interval.
  • Interval: how often to check the throughput.
  • Expressions: optional list of expressions to also evaluate. Useful for time of day alerting.

Example:

    var data = stream
        |from()...
    // Trigger critical alert if the throughput drops below 100 points per 10s and checked every 10s.
    data
        |deadman(100.0, 10s)
    //Do normal processing of data
    data...

The above is equivalent to this example:

    var data = stream
        |from()...
    // Trigger critical alert if the throughput drops below 100 points per 10s and checked every 10s.
    data
        |stats(10s)
            .align()
        |derivative('emitted')
            .unit(10s)
            .nonNegative()
        |alert()
            .id('node \'stream0\' in task \'{{ .TaskName }}\'')
            .message('{{ .ID }} is {{ if eq .Level "OK" }}alive{{ else }}dead{{ end }}: {{ index .Fields "emitted" | printf "%0.3f" }} points/10s.')
            .crit(lambda: "emitted" <= 100.0)
    //Do normal processing of data
    data...

The id and message alert properties can be configured globally via the ‘deadman’ configuration section.

Since the AlertNode is the last piece it can be further modified as usual. Example:

    var data = stream
        |from()...
    // Trigger critical alert if the throughput drops below 100 points per 10s and checked every 10s.
    data
        |deadman(100.0, 10s)
            .slack()
            .channel('#dead_tasks')
    //Do normal processing of data
    data...

You can specify additional lambda expressions to further constrain when the deadman’s switch is triggered. Example:

    var data = stream
        |from()...
    // Trigger critical alert if the throughput drops below 100 points per 10s and checked every 10s.
    // Only trigger the alert if the time of day is between 8am-5pm.
    data
        |deadman(100.0, 10s, lambda: hour("time") >= 8 AND hour("time") <= 17)
    //Do normal processing of data
    data...
k8sAutoscale|deadman(threshold float64, interval time.Duration, expr ...ast.LambdaNode)

Returns: AlertNode

Default

Create a node that can set defaults for missing tags or fields.

k8sAutoscale|default()

Returns: DefaultNode

Delete

Create a node that can delete tags or fields.

k8sAutoscale|delete()

Returns: DeleteNode

Derivative

Create a new node that computes the derivative of adjacent points.

k8sAutoscale|derivative(field string)

Returns: DerivativeNode

Difference

Compute the difference between points independent of elapsed time.

k8sAutoscale|difference(field string)

Returns: InfluxQLNode

Distinct

Produce batch of only the distinct points.

k8sAutoscale|distinct(field string)

Returns: InfluxQLNode

Ec2Autoscale

Create a node that can trigger autoscale events for a ec2 autoscalegroup.

k8sAutoscale|ec2Autoscale()

Returns: Ec2AutoscaleNode

Elapsed

Compute the elapsed time between points.

k8sAutoscale|elapsed(field string, unit time.Duration)

Returns: InfluxQLNode

Eval

Create an eval node that will evaluate the given transformation function to each data point. A list of expressions may be provided and will be evaluated in the order they are given. The results are available to later expressions.

k8sAutoscale|eval(expressions ...ast.LambdaNode)

Returns: EvalNode

First

Select the first point.

k8sAutoscale|first(field string)

Returns: InfluxQLNode

Flatten

Flatten points with similar times into a single point.

k8sAutoscale|flatten()

Returns: FlattenNode

GroupBy

Group the data by a set of tags.

Can pass literal * to group by all dimensions. Example:

    |groupBy(*)
k8sAutoscale|groupBy(tag ...interface{})

Returns: GroupByNode

HoltWinters

Compute the Holt-Winters (/influxdb/v1/query_language/functions/#holt-winters) forecast of a data set.

k8sAutoscale|holtWinters(field string, h int64, m int64, interval time.Duration)

Returns: InfluxQLNode

HoltWintersWithFit

Compute the Holt-Winters (/influxdb/v1/query_language/functions/#holt-winters) forecast of a data set. This method also outputs all the points used to fit the data in addition to the forecasted data.

k8sAutoscale|holtWintersWithFit(field string, h int64, m int64, interval time.Duration)

Returns: InfluxQLNode

HttpOut

Create an HTTP output node that caches the most recent data it has received. The cached data is available at the given endpoint. The endpoint is the relative path from the API endpoint of the running task. For example, if the task endpoint is at /kapacitor/v1/tasks/<task_id> and endpoint is top10, then the data can be requested from /kapacitor/v1/tasks/<task_id>/top10.

k8sAutoscale|httpOut(endpoint string)

Returns: HTTPOutNode

HttpPost

Creates an HTTP Post node that POSTS received data to the provided HTTP endpoint. HttpPost expects 0 or 1 arguments. If 0 arguments are provided, you must specify an endpoint property method.

k8sAutoscale|httpPost(url ...string)

Returns: HTTPPostNode

InfluxDBOut

Create an influxdb output node that will store the incoming data into InfluxDB.

k8sAutoscale|influxDBOut()

Returns: InfluxDBOutNode

Join

Join this node with other nodes. The data is joined on timestamp.

k8sAutoscale|join(others ...Node)

Returns: JoinNode

K8sAutoscale

Create a node that can trigger autoscale events for a kubernetes cluster.

k8sAutoscale|k8sAutoscale()

Returns: K8sAutoscaleNode

KapacitorLoopback

Create an kapacitor loopback node that will send data back into Kapacitor as a stream.

k8sAutoscale|kapacitorLoopback()

Returns: KapacitorLoopbackNode

Last

Select the last point.

k8sAutoscale|last(field string)

Returns: InfluxQLNode

Log

Create a node that logs all data it receives.

k8sAutoscale|log()

Returns: LogNode

Mean

Compute the mean of the data.

k8sAutoscale|mean(field string)

Returns: InfluxQLNode

Median

Compute the median of the data.

Note: This method is not a selector. If you want the median point, use .percentile(field, 50.0).

k8sAutoscale|median(field string)

Returns: InfluxQLNode

Mode

Compute the mode of the data.

k8sAutoscale|mode(field string)

Returns: InfluxQLNode

MovingAverage

Compute a moving average of the last window points. No points are emitted until the window is full.

k8sAutoscale|movingAverage(field string, window int64)

Returns: InfluxQLNode

Percentile

Select a point at the given percentile. This is a selector function, no interpolation between points is performed.

k8sAutoscale|percentile(field string, percentile float64)

Returns: InfluxQLNode

Sample

Create a new node that samples the incoming points or batches.

One point will be emitted every count or duration specified.

k8sAutoscale|sample(rate interface{})

Returns: SampleNode

Shift

Create a new node that shifts the incoming points or batches in time.

k8sAutoscale|shift(shift time.Duration)

Returns: ShiftNode

Sideload

Create a node that can load data from external sources.

k8sAutoscale|sideload()

Returns: SideloadNode

Spread

Compute the difference between min and max points.

k8sAutoscale|spread(field string)

Returns: InfluxQLNode

StateCount

Create a node that tracks number of consecutive points in a given state.

k8sAutoscale|stateCount(expression ast.LambdaNode)

Returns: StateCountNode

StateDuration

Create a node that tracks duration in a given state.

k8sAutoscale|stateDuration(expression ast.LambdaNode)

Returns: StateDurationNode

Stats

Create a new stream of data that contains the internal statistics of the node. The interval represents how often to emit the statistics based on real time. This means the interval time is independent of the times of the data points the source node is receiving.

k8sAutoscale|stats(interval time.Duration)

Returns: StatsNode

Stddev

Compute the standard deviation.

k8sAutoscale|stddev(field string)

Returns: InfluxQLNode

Sum

Compute the sum of all values.

k8sAutoscale|sum(field string)

Returns: InfluxQLNode

SwarmAutoscale

Create a node that can trigger autoscale events for a Docker swarm cluster.

k8sAutoscale|swarmAutoscale()

Returns: SwarmAutoscaleNode

Top

Select the top num points for field and sort by any extra tags or fields.

k8sAutoscale|top(num int64, field string, fieldsAndTags ...string)

Returns: InfluxQLNode

Trickle

Create a new node that converts batch data to stream data.

k8sAutoscale|trickle()

Returns: TrickleNode

Union

Perform the union of this node and all other given nodes.

k8sAutoscale|union(node ...Node)

Returns: UnionNode

Where

Create a new node that filters the data stream by a given expression.

k8sAutoscale|where(expression ast.LambdaNode)

Returns: WhereNode

Window

Create a new node that windows the stream by time.

NOTE: Window can only be applied to stream edges.

k8sAutoscale|window()

Returns: WindowNode


Was this page helpful?

Thank you for your feedback!


The future of Flux

Flux is going into maintenance mode. You can continue using it as you currently are without any changes to your code.

Read more

InfluxDB v3 enhancements and InfluxDB Clustered is now generally available

New capabilities, including faster query performance and management tooling advance the InfluxDB v3 product line. InfluxDB Clustered is now generally available.

InfluxDB v3 performance and features

The InfluxDB v3 product line has seen significant enhancements in query performance and has made new management tooling available. These enhancements include an operational dashboard to monitor the health of your InfluxDB cluster, single sign-on (SSO) support in InfluxDB Cloud Dedicated, and new management APIs for tokens and databases.

Learn about the new v3 enhancements


InfluxDB Clustered general availability

InfluxDB Clustered is now generally available and gives you the power of InfluxDB v3 in your self-managed stack.

Talk to us about InfluxDB Clustered