Documentation

Dropwizard input data format

Use the dropwizard input data format to parse the JSON Dropwizard representation of a single dropwizard metric registry into Telegraf metrics. By default, tags are parsed from metric names as if they were actual InfluxDB line protocol keys (measurement<,tag_set>) which can be overridden by defining a custom template pattern. All field value types are supported, string, number and boolean.

Configuration

[[inputs.file]]
  files = ["example"]

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "dropwizard"

  ## Used by the templating engine to join matched values when cardinality is > 1
  separator = "_"

  ## Each template line requires a template pattern. It can have an optional
  ## filter before the template and separated by spaces. It can also have optional extra
  ## tags following the template. Multiple tags should be separated by commas and no spaces
  ## similar to the line protocol format. There can be only one default template.
  ## Templates support below format:
  ## 1. filter + template
  ## 2. filter + template + extra tag(s)
  ## 3. filter + template with field key
  ## 4. default template
  ## By providing an empty template array, templating is disabled and measurements are parsed as InfluxDB line protocol keys (measurement<,tag_set>)
  templates = []

  ## You may use an appropriate [gjson path](https://github.com/tidwall/gjson#path-syntax)
  ## to locate the metric registry within the JSON document
  # dropwizard_metric_registry_path = "metrics"

  ## You may use an appropriate [gjson path](https://github.com/tidwall/gjson#path-syntax)
  ## to locate the default time of the measurements within the JSON document
  # dropwizard_time_path = "time"
  # dropwizard_time_format = "2006-01-02T15:04:05Z07:00"

  ## You may use an appropriate [gjson path](https://github.com/tidwall/gjson#path-syntax)
  ## to locate the tags map within the JSON document
  # dropwizard_tags_path = "tags"

  ## You may even use tag paths per tag
  # [inputs.exec.dropwizard_tag_paths]
  #   tag1 = "tags.tag1"
  #   tag2 = "tags.tag2"
  • Copy
  • Fill window

Examples

A typical JSON of a dropwizard metric registry:

{
    "version": "3.0.0",
    "counters" : {
        "measurement,tag1=green" : {
            "count" : 1
        }
    },
    "meters" : {
        "measurement" : {
            "count" : 1,
            "m15_rate" : 1.0,
            "m1_rate" : 1.0,
            "m5_rate" : 1.0,
            "mean_rate" : 1.0,
            "units" : "events/second"
        }
    },
    "gauges" : {
        "measurement" : {
            "value" : 1
        }
    },
    "histograms" : {
        "measurement" : {
            "count" : 1,
            "max" : 1.0,
            "mean" : 1.0,
            "min" : 1.0,
            "p50" : 1.0,
            "p75" : 1.0,
            "p95" : 1.0,
            "p98" : 1.0,
            "p99" : 1.0,
            "p999" : 1.0,
            "stddev" : 1.0
        }
    },
    "timers" : {
        "measurement" : {
            "count" : 1,
            "max" : 1.0,
            "mean" : 1.0,
            "min" : 1.0,
            "p50" : 1.0,
            "p75" : 1.0,
            "p95" : 1.0,
            "p98" : 1.0,
            "p99" : 1.0,
            "p999" : 1.0,
            "stddev" : 1.0,
            "m15_rate" : 1.0,
            "m1_rate" : 1.0,
            "m5_rate" : 1.0,
            "mean_rate" : 1.0,
            "duration_units" : "seconds",
            "rate_units" : "calls/second"
        }
    }
}
  • Copy
  • Fill window

Would get translated into 4 different measurements:

measurement,metric_type=counter,tag1=green count=1
measurement,metric_type=meter count=1,m15_rate=1.0,m1_rate=1.0,m5_rate=1.0,mean_rate=1.0
measurement,metric_type=gauge value=1
measurement,metric_type=histogram count=1,max=1.0,mean=1.0,min=1.0,p50=1.0,p75=1.0,p95=1.0,p98=1.0,p99=1.0,p999=1.0
measurement,metric_type=timer count=1,max=1.0,mean=1.0,min=1.0,p50=1.0,p75=1.0,p95=1.0,p98=1.0,p99=1.0,p999=1.0,stddev=1.0,m15_rate=1.0,m1_rate=1.0,m5_rate=1.0,mean_rate=1.0
  • Copy
  • Fill window

You may also parse a dropwizard registry from any JSON document which contains a dropwizard registry in some inner field. Eg. to parse the following JSON document:

{
    "time" : "2017-02-22T14:33:03.662+02:00",
    "tags" : {
        "tag1" : "green",
        "tag2" : "yellow"
    },
    "metrics" : {
        "counters" : {
            "measurement" : {
                "count" : 1
            }
        },
        "meters" : {},
        "gauges" : {},
        "histograms" : {},
        "timers" : {}
    }
}
  • Copy
  • Fill window

and translate it into:

measurement,metric_type=counter,tag1=green,tag2=yellow count=1 1487766783662000000
  • Copy
  • Fill window

you simply need to use the following additional configuration properties:

dropwizard_metric_registry_path = "metrics"
dropwizard_time_path = "time"
dropwizard_time_format = "2006-01-02T15:04:05Z07:00"
dropwizard_tags_path = "tags"
## tag paths per tag are supported too, eg.
#[inputs.yourinput.dropwizard_tag_paths]
#  tag1 = "tags.tag1"
#  tag2 = "tags.tag2"
  • Copy
  • Fill window

Was this page helpful?

Thank you for your feedback!


The future of Flux

Flux is going into maintenance mode. You can continue using it as you currently are without any changes to your code.

Read more

InfluxDB 3 Core and Enterprise are now in Beta

InfluxDB 3 Core and Enterprise are now available for beta testing, available under MIT or Apache 2 license.

InfluxDB 3 Core is a high-speed, recent-data engine that collects and processes data in real-time, while persisting it to local disk or object storage. InfluxDB 3 Enterprise is a commercial product that builds on Core’s foundation, adding high availability, read replicas, enhanced security, and data compaction for faster queries. A free tier of InfluxDB 3 Enterprise will also be available for at-home, non-commercial use for hobbyists to get the full historical time series database set of capabilities.

For more information, check out: