Documentation

experimental.histogram() function

experimental.histogram() is subject to change at any time.

experimental.histogram() approximates the cumulative distribution of a dataset by counting data frequencies for a list of bins.

A bin is defined by an upper bound where all data points that are less than or equal to the bound are counted in the bin. Bin counts are cumulative.

Function behavior

  • Outputs a single table for each input table.
  • Each output table represents a unique histogram.
  • Output tables have the same group key as the corresponding input table.
  • Drops columns that are not part of the group key.
  • Adds an le column to store upper bound values.
  • Stores bin counts in the _value column.
Function type signature
(<-tables: stream[{A with _value: float}], bins: [float], ?normalize: bool) => stream[{A with le: float, _value: float}]

For more information, see Function type signatures.

Parameters

bins

(Required) List of upper bounds to use when computing histogram frequencies, including the maximum value of the data set.

This value can be set to positive infinity (float(v: "+Inf")) if no maximum is known.

Bin helper functions

The following helper functions can be used to generated bins.

  • linearBins()
  • logarithmicBins()

normalize

Convert count values into frequency values between 0 and 1. Default is false.

Note: Normalized histograms cannot be aggregated by summing their counts.

tables

Input data. Default is piped-forward data (<-).

Examples

Create a histogram from input data

import "experimental"
import "sampledata"

sampledata.float()
    |> experimental.histogram(
        bins: [
            0.0,
            5.0,
            10.0,
            15.0,
            20.0,
        ],
    )

View example input and output


Was this page helpful?

Thank you for your feedback!


New in InfluxDB 3.5

Key enhancements in InfluxDB 3.5 and the InfluxDB 3 Explorer 1.3.

See the Blog Post

InfluxDB 3.5 is now available for both Core and Enterprise, introducing custom plugin repository support, enhanced operational visibility with queryable CLI parameters and manual node management, stronger security controls, and general performance improvements.

InfluxDB 3 Explorer 1.3 brings powerful new capabilities including Dashboards (beta) for saving and organizing your favorite queries, and cache querying for instant access to Last Value and Distinct Value caches—making Explorer a more comprehensive workspace for time series monitoring and analysis.

For more information, check out:

InfluxDB Docker latest tag changing to InfluxDB 3 Core

On November 3, 2025, the latest tag for InfluxDB Docker images will point to InfluxDB 3 Core. To avoid unexpected upgrades, use specific version tags in your Docker deployments.

If using Docker to install and run InfluxDB, the latest tag will point to InfluxDB 3 Core. To avoid unexpected upgrades, use specific version tags in your Docker deployments. For example, if using Docker to run InfluxDB v2, replace the latest version tag with a specific version tag in your Docker pull command–for example:

docker pull influxdb:2