Documentation

anomalydetection.mad() function

anomalydetection.mad() is a user-contributed function maintained by the package author.

anomalydetection.mad() uses the median absolute deviation (MAD) algorithm to detect anomalies in a data set.

Input data requires _time and _value columns. Output data is grouped by _time and includes the following columns of interest:

  • _value: difference between of the original _value from the computed MAD divided by the median difference.
  • MAD: median absolute deviation of the group.
  • level: anomaly indicator set to either anomaly or normal.
Function type signature
(<-table: stream[B], ?threshold: A) => stream[{C with level: string, _value_diff_med: D, _value_diff: D, _value: D}] where A: Comparable + Equatable, B: Record, D: Comparable + Divisible + Equatable
For more information, see Function type signatures.

Parameters

threshold

Deviation threshold for anomalies.

table

Input data. Default is piped-forward data (<-).

Examples

Use the MAD algorithm to detect anomalies

import "contrib/anaisdg/anomalydetection"
import "sampledata"

sampledata.float()
    |> anomalydetection.mad(threshold: 1.0)

View example input and output


Was this page helpful?

Thank you for your feedback!


Introducing InfluxDB Clustered

A highly available InfluxDB 3.0 cluster on your own infrastructure.

InfluxDB Clustered is a highly available InfluxDB 3.0 cluster built for high write and query workloads on your own infrastructure.

InfluxDB Clustered is currently in limited availability and is only available to a limited group of InfluxData customers. If interested in being part of the limited access group, please contact the InfluxData Sales team.

Learn more
Contact InfluxData Sales

The future of Flux

Flux is going into maintenance mode. You can continue using it as you currently are without any changes to your code.

Flux is going into maintenance mode and will not be supported in InfluxDB 3.0. This was a decision based on the broad demand for SQL and the continued growth and adoption of InfluxQL. We are continuing to support Flux for users in 1.x and 2.x so you can continue using it with no changes to your code. If you are interested in transitioning to InfluxDB 3.0 and want to future-proof your code, we suggest using InfluxQL.

For information about the future of Flux, see the following:

State of the InfluxDB Cloud Serverless documentation

InfluxDB Cloud Serverless documentation is a work in progress.

The new documentation for InfluxDB Cloud Serverless is a work in progress. We are adding new information and content almost daily. Thank you for your patience!

If there is specific information you’re looking for, please submit a documentation issue.