Work with Prometheus summaries
Use Flux to query and transform Prometheus summary metrics stored in InfluxDB.
A summary samples observations (usually things like request durations and response sizes). While it also provides a total count of observations and a sum of all observed values, it calculates configurable quantiles over a sliding time window.
Example summary metric in Prometheus data
# HELP task_executor_run_duration The duration in seconds between a run starting and finishing.
# TYPE task_executor_run_duration summary
example_summary_duration{label="foo",quantile="0.5"} 4.147907251
example_summary_duration{label="foo",quantile="0.9"} 4.147907251
example_summary_duration{label="foo",quantile="0.99"} 4.147907251
example_summary_duration_sum{label="foo"} 2701.367126714001
example_summary_duration_count{label="foo"} 539
The examples below include example data collected from the InfluxDB OSS 2.x /metrics
endpoint
and stored in InfluxDB.
Prometheus metric parsing formats
Query structure depends on the Prometheus metric parsing format used to scrape the Prometheus metrics. Select the appropriate metric format version below.
Visualize summary metric quantile values
Prometheus summary metrics provide quantile values that can be visualized without modification.
- Filter by the
prometheus
measurement. - Filter by your Prometheus metric name field.
from(bucket: "example-bucket")
|> range(start: -1m)
|> filter(fn: (r) => r._measurement == "prometheus")
|> filter(fn: (r) => r._field == "go_gc_duration_seconds")
- Filter by your Prometheus metric name measurement.
- Filter out the
sum
andcount
fields.
from(bucket: "example-bucket")
|> range(start: -1m)
|> filter(fn: (r) => r._measurement == "go_gc_duration_seconds")
|> filter(fn: (r) => r._field != "count" and r._field != "sum")
Derive average values from a summary metric
Use the sum and count values provided in Prometheus summary metrics to derive an average summary value.
- Filter by the
prometheus
measurement. - Filter by the
<metric_name>_count
and<metric_name>_sum
fields. - Use
pivot()
to pivot fields into columns based on time. Each row then contains a<metric_name>_count
and<metric_name>_sum
column. - Divide the
<metric_name>_sum
column by the<metric_name>_count
column to produce a new_value
.
from(bucket: "example-bucket")
|> range(start: -1m)
|> filter(fn: (r) => r._measurement == "prometheus")
|> filter(fn: (r) => r._field == "go_gc_duration_seconds_count" or r._field == "go_gc_duration_seconds_sum")
|> pivot(rowKey: ["_time"], columnKey: ["_field"], valueColumn: "_value")
|> map(fn: (r) => ({r with _value: r.go_gc_duration_seconds_sum / r.go_gc_duration_seconds_count}))
- Filter by your Prometheus metric name measurement.
- Filter by the
count
andsum
fields. - Use
pivot()
to pivot fields into columns. Each row then contains acount
andsum
column. - Divide the
sum
column by thecount
column to produce a new_value
.
from(bucket: "example-bucket")
|> range(start: -1m)
|> filter(fn: (r) => r._measurement == "go_gc_duration_seconds")
|> filter(fn: (r) => r._field == "count" or r._field == "sum")
|> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
|> map(fn: (r) => ({ r with _value: r.sum / r.count }))
Was this page helpful?
Thank you for your feedback!
Support and feedback
Thank you for being part of our community! We welcome and encourage your feedback and bug reports for Flux and this documentation. To find support, use the following resources:
Customers with an annual or support contract can contact InfluxData Support.