Documentation

Work with Prometheus gauges

Use Flux to query and transform Prometheus gauge metrics stored in InfluxDB.

A gauge is a metric that represents a single numerical value that can arbitrarily go up and down.

Prometheus metric types

Example gauge metric in Prometheus data
# HELP example_gauge_current Current number of items as example gauge metric
# TYPE example_gauge_current gauge
example_gauge_current 128
  • Copy
  • Fill window

Generally gauge metrics can be used as they are reported and don’t require any additional processing.

The examples below include example data collected from the InfluxDB OSS 2.x /metrics endpoint using prometheus.scrape() and stored in InfluxDB.

Prometheus metric parsing formats

Query structure depends on the Prometheus metric parsing format used to scrape the Prometheus metrics. Select the appropriate metric format version below.

Calculate the rate of change in gauge values

  1. Filter results by the prometheus measurement and counter metric name field.
  2. Use derivative() to calculate the rate of change between gauge values. By default, derivative() returns the rate of change per second. Use the unit parameter to customize the rate unit. To replace negative derivatives with null values, set the nonNegative parameter to true.
from(bucket: "example-bucket")
    |> range(start: -1m)
    |> filter(fn: (r) => r._measurement == "prometheus" and r._field == "go_goroutines")
    |> derivative(nonNegative: true)
  • Copy
  • Fill window
Raw Prometheus gauge metric in InfluxDB
Derivative of Prometheus gauge metrics in InfluxDB

View example input and output data

  1. Filter results by the counter metric name measurement and gauge field.
  2. Use derivative() to calculate the rate of change between gauge values. By default, derivative() returns the rate of change per second. Use the unit parameter to customize the rate unit. To replace negative derivatives with null values, set the nonNegative parameter to true.
from(bucket: "example-bucket")
    |> range(start: -1m)
    |> filter(fn: (r) => r._measurement == "go_goroutines" and r._field == "gauge")
    |> derivative(nonNegative: true)
  • Copy
  • Fill window
Raw Prometheus gauge metric in InfluxDB
Derivative of Prometheus gauge metrics in InfluxDB

View example input and output data

Calculate the average rate of change in specified time windows

  1. Import the experimental/aggregate package.

  2. Filter results by the prometheus measurement and counter metric name field.

  3. Use aggregate.rate() to calculate the average rate of change per time window.

    • Use the every parameter to define the time window interval.
    • Use the unit parameter to customize the rate unit. By default, aggregate.rate() returns the per second (1s) rate of change.
    • Use the groupColumns parameter to specify columns to group by when performing the aggregation.
import "experimental/aggregate"

from(bucket: "example-bucket")
    |> range(start: -1m)
    |> filter(fn: (r) => r._measurement == "prometheus" and r._field == "go_goroutines")
    |> aggregate.rate(every: 10s, unit: 1s)
  • Copy
  • Fill window
Raw Prometheus gauge metric in InfluxDB
Calculate the average rate of change of Prometheus gauge metrics per time window with Flux

View example input and output data

  1. Import the experimental/aggregate package.

  2. Filter results by the counter metric name measurement and gauge field.

  3. Use aggregate.rate() to calculate the average rate of change per time window.

    • Use the every parameter to define the time window interval.
    • Use the unit parameter to customize the rate unit. By default, aggregate.rate() returns the per second (1s) rate of change.
    • Use the groupColumns parameter to specify columns to group by when performing the aggregation.
import "experimental/aggregate"

from(bucket: "example-bucket")
    |> range(start: -1m)
    |> filter(fn: (r) => r._measurement == "go_goroutines" and r._field == "gauge")
    |> aggregate.rate(every: 10s, unit: 1s)
  • Copy
  • Fill window
Raw Prometheus gauge metric in InfluxDB
Calculate the average rate of change of Prometheus gauge metrics per time window with Flux

View example input and output data


Was this page helpful?

Thank you for your feedback!


The future of Flux

Flux is going into maintenance mode. You can continue using it as you currently are without any changes to your code.

Read more

InfluxDB 3 Core and Enterprise are now in Beta

InfluxDB 3 Core and Enterprise are now available for beta testing, available under MIT or Apache 2 license.

InfluxDB 3 Core is a high-speed, recent-data engine that collects and processes data in real-time, while persisting it to local disk or object storage. InfluxDB 3 Enterprise is a commercial product that builds on Core’s foundation, adding high availability, read replicas, enhanced security, and data compaction for faster queries. A free tier of InfluxDB 3 Enterprise will also be available for at-home, non-commercial use for hobbyists to get the full historical time series database set of capabilities.

For more information, check out: