Documentation

anomalydetection.mad() function

anomalydetection.mad() is a user-contributed function maintained by the package author.

anomalydetection.mad() uses the median absolute deviation (MAD) algorithm to detect anomalies in a data set.

Input data requires _time and _value columns. Output data is grouped by _time and includes the following columns of interest:

  • _value: difference between of the original _value from the computed MAD divided by the median difference.
  • MAD: median absolute deviation of the group.
  • level: anomaly indicator set to either anomaly or normal.
Function type signature
(<-table: stream[B], ?threshold: A) => stream[{C with level: string, _value_diff_med: D, _value_diff: D, _value: D}] where A: Comparable + Equatable, B: Record, D: Comparable + Divisible + Equatable
  • Copy
  • Fill window

For more information, see Function type signatures.

Parameters

threshold

Deviation threshold for anomalies.

table

Input data. Default is piped-forward data (<-).

Examples

Use the MAD algorithm to detect anomalies

import "contrib/anaisdg/anomalydetection"
import "sampledata"

sampledata.float()
    |> anomalydetection.mad(threshold: 1.0)
  • Copy
  • Fill window

View example input and output


Was this page helpful?

Thank you for your feedback!


The future of Flux

Flux is going into maintenance mode. You can continue using it as you currently are without any changes to your code.

Read more

New in InfluxDB 3.2

Key enhancements in InfluxDB 3.2 and the InfluxDB 3 Explorer UI is now generally available.

See the Blog Post

InfluxDB 3.2 is now available for both Core and Enterprise, bringing the general availability of InfluxDB 3 Explorer, a new UI that simplifies how you query, explore, and visualize data. On top of that, InfluxDB 3.2 includes a wide range of performance improvements, feature updates, and bug fixes including automated data retention and more.

For more information, check out: