Documentation

Track state changes across task executions

Problem

It’s common to use InfluxDB tasks to evaluate and assign states to your time series data and then detect changes in those states. Tasks process data in batches, but what happens if there is a state change across the batch boundary? The task won’t recognize it without knowing the final state of the previous task execution. This guide walks through creating a task that assigns a state to rows and then uses results from the previous task execution to detect any state changes across the batch boundary so you don’t miss any state changes.

Solution

Explicitly assign levels to your data based on thresholds.

Solution Advantages

This is the easiest solution to understand if you have never written a task with the monitor package.

Solution Disadvantages

You have to explicitly define your thresholds, which potentially requires more code.

Solution Overview

Create a task where you:

  1. Boilerplate. Import packages and define task options.
  2. Query your data.
  3. Assign states to your data based on thresholds. Store this data in a variable, i.e. “states”.
  4. Write the “states” to a bucket.
  5. Find the latest value from the previous task run and store it in a variable “last_state_previous_task”.
  6. Union “states” and “last_state_previous_task”. Store this data in a variable “unioned_states”.
  7. Discover state changes in “unioned_states”. Store this data in a variable “state_changes”.
  8. Notify on state changes that span across the last two tasks to catch any state changes that occur across task executions.

Solution Explained

  1. Import packages and define task options and secrets. Import the following packages:
  • Flux Telegram package: This package

  • Flux InfluxDB secrets package: This package contains the secrets.get() function which allows you to retrieve secrets from the InfluxDB secret store. Learn how to manage secrets in InfluxDB to use this package.

  • Flux InfluxDB monitoring package: This package contains functions and tools for monitoring your data.

    import "contrib/sranka/telegram"
    import "influxdata/influxdb/secrets"
    import "influxdata/influxdb/monitor"
    
    option task = {name: "State changes across tasks", every: 30m, offset: 5m}
    
    telegram_token = secrets.get(key: "telegram_token")
    telegram_channel_ID = secrets.get(key: "telegram_channel_ID")
  1. Query the data you want to monitor.

    data = from(bucket: "example-bucket")
        // Query for data from the last successful task run or from the 1 every duration ago.
        // This ensures that you won’t miss any data.
        |> range(start: tasks.lastSuccess(orTime: -task.every))
        |> filter(fn: (r) => r._measurement == "example-measurement")
        |> filter(fn: (r) => r.tagKey1 == "example-tag-value")
        |> filter(fn: (r) => r._field == "example-field")

    Where data might look like:

    _measurementtagKey1_field_value_time
    example-measurementexample-tag-valueexample-field30.02022-01-01T00:00:00Z
    example-measurementexample-tag-valueexample-field50.02022-01-01T00:00:00Z
  2. Assign states to your data based on thresholds. Store this data in a variable, i.e. “states”. To simplify this example, there are only two states: “ok” and “crit.” Store states in the _level column (required by the monitor package).

    states =
        data
            |> map(fn: (r) => ({r with _level: if r._value > 40.0 then "crit" else "ok"}))

    Where states might look like:

    _measurementtagKey1_field_value_level_time
    example-measurementexample-tag-valueexample-field30.0ok2022-01-01T00:00:00Z
    example-measurementexample-tag-valueexample-field50.0crit2022-01-01T00:01:00Z
  3. Write “states” back to InfluxDB. You can write the data to a new measurement or to a new bucket. To write the data to a new measurement, use set() to update the value of the _measurement column in your “states” data.

    states
        // (Optional) Change the measurement name to write the data to a new measurement
        |> set(key: "_measurement", value: "new-measurement")
        |> to(bucket : "example-bucket") 
    
  4. Find the latest value from the previous task run and store it in a variable “last_state_previous_task”,

    last_state_previous_task =
        from(bucket: "example-bucket")
            |> range(start: date.sub(d: task.every, from: tasks.lastSuccess(orTime: -task.every))
            |> filter(fn: (r) => r._measurement == "example-measurement")
            |> filter(fn: (r) => r.tagKey == "example-tag-value")
            |> filter(fn: (r) => r._field == "example-field")
            |> last() 
    

    Where last_state_previous_task might look like:

    _measurementtagKey1_field_value_level_time
    example-measurementexample-tag-valueexample-field55.0crit2021-12-31T23:59:00Z
  5. Union “states” and “last_state_previous_task”. Store this data in a variable “unioned_states”. Use sort() to ensure rows are ordered by time.

    unioned_states =
        union(tables: [states, last_state_previous_task])
            |> sort(columns: ["_time"], desc: true)

    Where unioned_states might look like:

    _measurementtagKey1_field_value_level_time
    example-measurementexample-tag-valueexample-field55.0crit2021-12-31T23:59:00Z
    example-measurementexample-tag-valueexample-field30.0ok2022-01-01T00:00:00Z
    example-measurementexample-tag-valueexample-field50.0crit2022-01-01T00:01:00Z
  6. Use monitor.stateChangesOnly() to return only rows where the state changed in “unioned_states”. Store this data in a variable, “state_changes”.

    state_changes =
        unioned_states 
            |> monitor.stateChangesOnly()

    Where state_changes might look like:

    _measurementtagKey1_field_value_level_time
    example-measurementexample-tag-valueexample-field30.0ok2022-01-01T00:00:00Z
    example-measurementexample-tag-valueexample-field50.0crit2022-01-01T00:01:00Z
  7. Notify on state changes that span across the last two tasks to catch any state changes that occur across task executions.

    state_changes =
        data
            |> map(
                fn: (r) =>
                    ({
                        _value:
                            telegram.message(
                                token: telegram_token,
                                channel: telegram_channel_ID,
                                text: "state change at ${r._value} at ${r._time}",
                            ),
                    }),
            )

    Using the unioned data, the following alerts would be sent to Telegram:

    • state change at 30.0 at 2022-01-01T00:00:00Z
    • state change at 50.0 at 2022-01-01T00:01:00Z

Was this page helpful?

Thank you for your feedback!


New in InfluxDB 3.5

Key enhancements in InfluxDB 3.5 and the InfluxDB 3 Explorer 1.3.

See the Blog Post

InfluxDB 3.5 is now available for both Core and Enterprise, introducing custom plugin repository support, enhanced operational visibility with queryable CLI parameters and manual node management, stronger security controls, and general performance improvements.

InfluxDB 3 Explorer 1.3 brings powerful new capabilities including Dashboards (beta) for saving and organizing your favorite queries, and cache querying for instant access to Last Value and Distinct Value caches—making Explorer a more comprehensive workspace for time series monitoring and analysis.

For more information, check out:

InfluxDB Docker latest tag changing to InfluxDB 3 Core

On November 3, 2025, the latest tag for InfluxDB Docker images will point to InfluxDB 3 Core. To avoid unexpected upgrades, use specific version tags in your Docker deployments.

If using Docker to install and run InfluxDB, the latest tag will point to InfluxDB 3 Core. To avoid unexpected upgrades, use specific version tags in your Docker deployments. For example, if using Docker to run InfluxDB v2, replace the latest version tag with a specific version tag in your Docker pull command–for example:

docker pull influxdb:2