Documentation

Assign custom states to data

Problem

You may want to use the monitor package and take advantage of functions like monitor.stateChangesOnly(). However, monitor.stateChangesOnly() only allows you to monitor four states: “crit”, “warn”, “ok”, and “info”. What if you want to be able to assign and monitor state changes across custom states or more than four states?

Solution

Define your own custom stateChangesOnly() function. Use the function from the source code here and alter it to accommodate more than four levels. Here we account for six different levels instead of just four.

import "dict"
import "experimental"

stateChangesOnly = (tables=<-) => {
    levelInts =
        [
            "customLevel1": 1,
            "customLevel2": 2,
            "customLevel3": 3,
            "customLevel4": 4,
            "customLevel5": 5,
            "customLevel6": 6,
        ]

    return
        tables
            |> map(fn: (r) => ({r with level_value: dict.get(dict: levelInts, key: r._level, default: 0)}))
            |> duplicate(column: "_level", as: "____temp_level____")
            |> drop(columns: ["_level"])
            |> rename(columns: {"____temp_level____": "_level"})
            |> sort(columns: ["_source_timestamp", "_time"], desc: false)
            |> difference(columns: ["level_value"])
            |> filter(fn: (r) => r.level_value != 0)
            |> drop(columns: ["level_value"])
            |> experimental.group(mode: "extend", columns: ["_level"])
}
  • Copy
  • Fill window

Construct some example data with array.from() and map custom levels to it:

array.from(
    rows: [
        {_value: 0.0},
        {_value: 3.0},
        {_value: 5.0},
        {_value: 7.0},
        {_value: 7.5},
        {_value: 9.0},
        {_value: 11.0},
    ],
)
    |> map(
        fn: (r) =>
            ({r with _level:
                    if r._value <= 2.0 then
                        "customLevel2"
                    else if r._value <= 4.0 and r._value > 2.0 then
                        "customLevel3"
                    else if r._value <= 6.0 and r._value > 4.0 then
                        "customLevel4"
                    else if r._value <= 8.0 and r._value > 6.0 then
                        "customLevel5"
                    else
                        "customLevel6",
            }),
    )
  • Copy
  • Fill window

Where the example data looks like:

_value_level
0.0customLevel2
3.0customLevel3
5.0customLevel4
7.0customLevel5
7.5customLevel5
9.0customLevel6
11.0customLevel6

Now apply our custom stateChangesOnly() function:

import "array"
import "dict"
import "experimental"

stateChangesOnly = (tables=<-) => {
    levelInts =
        [
            "customLevel1": 1,
            "customLevel2": 2,
            "customLevel3": 3,
            "customLevel4": 4,
            "customLevel5": 5,
            "customLevel6": 6,
        ]

    return
        tables
            |> map(fn: (r) => ({r with level_value: dict.get(dict: levelInts, key: r._level, default: 0)}))
            |> duplicate(column: "_level", as: "____temp_level____")
            |> drop(columns: ["_level"])
            |> rename(columns: {"____temp_level____": "_level"})
            |> sort(columns: ["_source_timestamp", "_time"], desc: false)
            |> difference(columns: ["level_value"])
            |> filter(fn: (r) => r.level_value != 0)
            |> drop(columns: ["level_value"])
            |> experimental.group(mode: "extend", columns: ["_level"])
}

data =
    array.from(
        rows: [
            {_value: 0.0},
            {_value: 3.0},
            {_value: 5.0},
            {_value: 7.0},
            {_value: 7.5},
            {_value: 9.0},
            {_value: 11.0},
        ],
    )
        |> map(
            fn: (r) =>
                ({r with _level:
                        if r._value <= 2.0 then
                            "customLevel2"
                        else if r._value <= 4.0 and r._value > 2.0 then
                            "customLevel3"
                        else if r._value <= 6.0 and r._value > 4.0 then
                            "customLevel4"
                        else if r._value <= 8.0 and r._value > 6.0 then
                            "customLevel5"
                        else
                            "customLevel6",
                }),
        )

data
    |> stateChangesOnly()
  • Copy
  • Fill window

This returns:

_value_level
3.0customLevel3
5.0customLevel4
7.0customLevel5
9.0customLevel6

Was this page helpful?

Thank you for your feedback!


The future of Flux

Flux is going into maintenance mode. You can continue using it as you currently are without any changes to your code.

Read more

InfluxDB 3 Core and Enterprise are now in Beta

InfluxDB 3 Core and Enterprise are now available for beta testing, available under MIT or Apache 2 license.

InfluxDB 3 Core is a high-speed, recent-data engine that collects and processes data in real-time, while persisting it to local disk or object storage. InfluxDB 3 Enterprise is a commercial product that builds on Core’s foundation, adding high availability, read replicas, enhanced security, and data compaction for faster queries. A free tier of InfluxDB 3 Enterprise will also be available for at-home, non-commercial use for hobbyists to get the full historical time series database set of capabilities.

For more information, check out: