Forecast error evaluator plugin
The Forecast Error Evaluator Plugin validates forecast model accuracy for time series data in InfluxDB 3 Enterprise by comparing predicted values with actual observations. The plugin periodically computes error metrics (MSE, MAE, RMSE, MAPE, or SMAPE), detects anomalies based on error thresholds, and sends notifications when forecast accuracy degrades. It includes debounce logic to suppress transient anomalies and supports multi-channel notifications via the Notification Sender Plugin.
Configuration
Plugin parameters may be specified as key-value pairs in the --trigger-arguments flag (CLI) or in the trigger_arguments field (API) when creating a trigger. Some plugins support TOML configuration files, which can be specified using the plugin’s config_file_path parameter.
If a plugin supports multiple trigger specifications, some parameters may depend on the trigger specification that you use.
Plugin metadata
This plugin includes a JSON metadata schema in its docstring that defines supported trigger types and configuration parameters. This metadata enables the InfluxDB 3 Explorer UI to display and configure the plugin.
Required parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
forecast_measurement | string | required | Measurement containing forecasted values |
actual_measurement | string | required | Measurement containing actual (ground truth) values |
forecast_field | string | required | Field name for forecasted values |
actual_field | string | required | Field name for actual values |
error_metric | string | required | Error metric to compute: “mse”, “mae”, “rmse”, “mape”, or “smape” |
error_thresholds | string | required | Threshold levels. Format: INFO-"0.5":WARN-"0.9":ERROR-"1.2":CRITICAL-"1.5" |
window | string | required | Time window for data analysis. Format: <number><unit> (for example, “1h”) |
senders | string | required | Dot-separated list of notification channels (for example, “slack.discord”) |
Notification parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
notification_text | string | default template | Template for notification message with variables $measurement, $level, $field, $error, $metric, $tags |
notification_path | string | “notify” | URL path for the notification sending plugin |
port_override | integer | 8181 | Port number where InfluxDB accepts requests |
Timing parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
min_condition_duration | string | none | Minimum duration for anomaly condition to persist before triggering notification |
rounding_freq | string | “1s” | Frequency to round timestamps for alignment |
Authentication parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
influxdb3_auth_token | string | env variable | API token for InfluxDB 3 Enterprise. Can be set via INFLUXDB3_AUTH_TOKEN |
Sender-specific parameters
Slack notifications
| Parameter | Type | Default | Description |
|---|---|---|---|
slack_webhook_url | string | required | Webhook URL from Slack |
slack_headers | string | none | Base64-encoded HTTP headers |
Discord notifications
| Parameter | Type | Default | Description |
|---|---|---|---|
discord_webhook_url | string | required | Webhook URL from Discord |
discord_headers | string | none | Base64-encoded HTTP headers |
HTTP notifications
| Parameter | Type | Default | Description |
|---|---|---|---|
http_webhook_url | string | required | Custom webhook URL for POST requests |
http_headers | string | none | Base64-encoded HTTP headers |
SMS notifications (via Twilio)
| Parameter | Type | Default | Description |
|---|---|---|---|
twilio_sid | string | env variable | Twilio Account SID (or TWILIO_SID env var) |
twilio_token | string | env variable | Twilio Auth Token (or TWILIO_TOKEN env var) |
twilio_from_number | string | required | Twilio sender number (for example, “+1234567890”) |
twilio_to_number | string | required | Recipient number (for example, “+0987654321”) |
TOML configuration
| Parameter | Type | Default | Description |
|---|---|---|---|
config_file_path | string | none | TOML config file path relative to PLUGIN_DIR (required for TOML configuration) |
To use a TOML configuration file, set the PLUGIN_DIR environment variable and specify the config_file_path in the trigger arguments. This is in addition to the --plugin-dir flag when starting InfluxDB 3 Enterprise.
Example TOML configuration
forecast_error_config_scheduler.toml
For more information on using TOML configuration files, see the Using TOML Configuration Files section in the influxdb3_plugins/README.md.
Software Requirements
- InfluxDB 3 Enterprise: with the Processing Engine enabled.
- Notification Sender Plugin for InfluxDB 3 Enterprise: Required for sending notifications. See the influxdata/notifier plugin.
- Python packages:
pandas(for data processing)requests(for HTTP notifications)
Installation steps
Start InfluxDB 3 Enterprise with the Processing Engine enabled (
--plugin-dir /path/to/plugins):influxdb3 serve \ --node-id node0 \ --object-store file \ --data-dir ~/.influxdb3 \ --plugin-dir ~/.pluginsInstall required Python packages:
influxdb3 install package pandas influxdb3 install package requestsInstall the influxdata/notifier plugin (required)
Trigger setup
Scheduled forecast validation
Run forecast error evaluation periodically:
influxdb3 create trigger \
--database weather_forecasts \
--path "gh:influxdata/forecast_error_evaluator/forecast_error_evaluator.py" \
--trigger-spec "every:30m" \
--trigger-arguments 'forecast_measurement=temperature_forecast,actual_measurement=temperature_actual,forecast_field=predicted_temp,actual_field=temp,error_metric=rmse,error_thresholds=INFO-"0.5":WARN-"1.0":ERROR-"2.0",window=1h,senders=slack,slack_webhook_url="$SLACK_WEBHOOK_URL"' \
forecast_validationSet SLACK_WEBHOOK_URL to your Slack incoming webhook URL.
Example usage
Example 1: Temperature forecast validation with Slack alerts
Validate temperature forecast accuracy and send Slack notifications:
# Create the trigger
influxdb3 create trigger \
--database weather_db \
--path "gh:influxdata/forecast_error_evaluator/forecast_error_evaluator.py" \
--trigger-spec "every:15m" \
--trigger-arguments 'forecast_measurement=temp_forecast,actual_measurement=temp_actual,forecast_field=predicted,actual_field=temperature,error_metric=rmse,error_thresholds=INFO-"0.5":WARN-"1.0":ERROR-"2.0":CRITICAL-"3.0",window=30m,senders=slack,slack_webhook_url="$SLACK_WEBHOOK_URL",min_condition_duration=10m' \
temp_forecast_check
# Write forecast data
influxdb3 write \
--database weather_db \
"temp_forecast,location=station1 predicted=22.5"
# Write actual data
influxdb3 write \
--database weather_db \
"temp_actual,location=station1 temperature=21.8"
# Check logs after trigger runs
influxdb3 query \
--database YOUR_DATABASE \
"SELECT * FROM system.processing_engine_logs WHERE trigger_name = 'temp_forecast_check'"Expected output
- Plugin computes RMSE between forecast and actual values
- If RMSE > 0.5, sends INFO-level notification
- If RMSE > 1.0, sends WARN-level notification
- Only triggers if condition persists for 10+ minutes (debounce)
Set SLACK_WEBHOOK_URL to your Slack incoming webhook URL.
Notification example:
[WARN] Forecast error alert in temp_forecast.predicted: rmse=1.2. Tags: location=station1
Example 2: Multi-metric validation with multiple channels
Monitor multiple forecast metrics with different notification channels:
# Create trigger with Discord and HTTP notifications
influxdb3 create trigger \
--database analytics \
--path "gh:influxdata/forecast_error_evaluator/forecast_error_evaluator.py" \
--trigger-spec "every:1h" \
--trigger-arguments 'forecast_measurement=sales_forecast,actual_measurement=sales_actual,forecast_field=predicted_sales,actual_field=sales_amount,error_metric=mae,error_thresholds=WARN-"1000":ERROR-"5000":CRITICAL-"10000",window=6h,senders=discord.http,discord_webhook_url="$DISCORD_WEBHOOK_URL",http_webhook_url="$HTTP_WEBHOOK_URL",notification_text="[$$level] Sales forecast error: $$metric=$$error (threshold exceeded)",rounding_freq=5min' \
sales_forecast_monitorSet DISCORD_WEBHOOK_URL and HTTP_WEBHOOK_URL to your webhook URLs.
Example 3: SMS alerts for critical forecast failures
Set up SMS notifications for critical forecast accuracy issues:
# Set environment variables (recommended for sensitive data)
export TWILIO_SID="your_twilio_sid"
export TWILIO_TOKEN="your_twilio_token"
# Create trigger with SMS notifications
influxdb3 create trigger \
--database production_forecasts \
--path "gh:influxdata/forecast_error_evaluator/forecast_error_evaluator.py" \
--trigger-spec "every:5m" \
--trigger-arguments 'forecast_measurement=demand_forecast,actual_measurement=demand_actual,forecast_field=predicted_demand,actual_field=actual_demand,error_metric=mse,error_thresholds=CRITICAL-"100000",window=15m,senders=sms,twilio_from_number="+1234567890",twilio_to_number="+0987654321",notification_text="CRITICAL: Production demand forecast error exceeded threshold. MSE: $$error",min_condition_duration=2m' \
critical_forecast_alertUsing TOML Configuration Files
This plugin supports using TOML configuration files for complex configurations.
Important Requirements
To use TOML configuration files, you must set the PLUGIN_DIR environment variable in the InfluxDB 3 Enterprise host environment:
PLUGIN_DIR=~/.plugins influxdb3 serve \
--node-id node0 \
--object-store file \
--data-dir ~/.influxdb3 \
--plugin-dir ~/.pluginsExample TOML Configuration
# forecast_error_config_scheduler.toml
forecast_measurement = "temperature_forecast"
actual_measurement = "temperature_actual"
forecast_field = "predicted_temp"
actual_field = "temperature"
error_metric = "rmse"
error_thresholds = 'INFO-"0.5":WARN-"1.0":ERROR-"2.0":CRITICAL-"3.0"'
window = "1h"
senders = "slack"
slack_webhook_url = "$SLACK_WEBHOOK_URL"
min_condition_duration = "10m"
rounding_freq = "1min"
notification_text = "[$$level] Forecast validation alert: $$metric=$$error in $$measurement.$$field"
# Authentication (use environment variables instead when possible)
influxdb3_auth_token = "your_token_here"Set SLACK_WEBHOOK_URL to your Slack incoming webhook URL.
Create trigger using TOML config
influxdb3 create trigger \
--database weather_db \
--path "gh:influxdata/forecast_error_evaluator/forecast_error_evaluator.py" \
--trigger-spec "every:30m" \
--trigger-arguments config_file_path=forecast_error_config_scheduler.toml \
forecast_validation_triggerCode overview
Files
forecast_error_evaluator.py: The main plugin code containing scheduler handler for forecast validationforecast_error_config_scheduler.toml: Example TOML configuration file
Logging
Logs are stored in the trigger’s database in the system.processing_engine_logs table. To view logs:
influxdb3 query --database YOUR_DATABASE "SELECT * FROM system.processing_engine_logs WHERE trigger_name = 'your_trigger_name'"Log columns:
- event_time: Timestamp of the log event
- trigger_name: Name of the trigger that generated the log
- log_level: Severity level (INFO, WARN, ERROR)
- log_text: Message describing validation results or errors
Main functions
process_scheduled_call(influxdb3_local, call_time, args)
Handles scheduled forecast validation tasks. Queries forecast and actual measurements, computes error metrics, and triggers notifications.
Key operations:
- Parses configuration from arguments or TOML file
- Queries forecast and actual measurements within time window
- Aligns timestamps using rounding frequency
- Computes specified error metric (MSE, MAE, RMSE, MAPE, or SMAPE)
- Evaluates thresholds and applies debounce logic
- Sends notifications via configured channels
compute_error_metric(forecast_values, actual_values, metric_type)
Core error computation engine that calculates forecast accuracy metrics.
Supported error metrics:
mse: Mean Squared Error - measures average squared differencesmae: Mean Absolute Error - measures average absolute differencesrmse: Root Mean Squared Error - square root of MSE, same units as original datamape: Mean Absolute Percentage Error - percentage-based errorsmape: Symmetric Mean Absolute Percentage Error - bounded 0-200%, handles over/under-estimation symmetrically
evaluate_thresholds(error_value, threshold_config)
Evaluates computed error against configured thresholds to determine alert level.
Returns alert level based on threshold ranges:
INFO: Informational threshold exceededWARN: Warning threshold exceededERROR: Error threshold exceededCRITICAL: Critical threshold exceeded
Troubleshooting
Common issues
Issue: No overlapping timestamps between forecast and actual data
Solution: Check that both measurements have data in the specified time window and use rounding_freq for alignment:
influxdb3 query --database mydb "SELECT time, field_value FROM forecast_measurement WHERE time >= now() - 1h"
influxdb3 query --database mydb "SELECT time, field_value FROM actual_measurement WHERE time >= now() - 1h"Issue: Notifications not being sent
Solution: Verify the Notification Sender Plugin is installed and webhook URLs are correct:
# Check if notifier plugin exists
ls ~/.plugins/notifier_plugin.py
# Test webhook URL manually
curl -X POST "your_webhook_url" -d '{"text": "test message"}'Issue: Error threshold format not recognized
Solution: Use proper threshold format with level prefixes. Note that MAPE and SMAPE thresholds are in percentages:
# For absolute metrics (MSE, MAE, RMSE)
--trigger-arguments 'error_thresholds=INFO-"0.5":WARN-"1.0":ERROR-"2.0":CRITICAL-"3.0"'
# For percentage metrics (MAPE, SMAPE)
--trigger-arguments 'error_thresholds=INFO-"5.0":WARN-"10.0":ERROR-"20.0":CRITICAL-"30.0"'Issue: MAPE/SMAPE calculation errors with zero values
Solution: MAPE cannot be calculated when actual values are zero, and SMAPE cannot be calculated when both forecast and actual are zero. The plugin automatically skips such rows and logs warnings. For datasets with frequent zero values, consider using MAE or RMSE instead.
Issue: Environment variables not loaded
Solution: Set environment variables before starting InfluxDB:
export INFLUXDB3_AUTH_TOKEN="your_token"
export TWILIO_SID="your_sid"
influxdb3 serve --plugin-dir ~/.pluginsDebugging tips
- Check data availability in both measurements:
influxdb3 query --database mydb \
"SELECT COUNT(*) FROM forecast_measurement WHERE time >= now() - window"- Verify timestamp alignment with rounding frequency:
--trigger-arguments 'rounding_freq=5min'- Test with shorter windows for faster debugging:
--trigger-arguments 'window=10m,min_condition_duration=1m'- Monitor notification delivery in logs:
influxdb3 query --database YOUR_DATABASE \
"SELECT * FROM system.processing_engine_logs WHERE log_text LIKE '%notification%'"Performance considerations
- Data alignment: Use appropriate
rounding_freqto balance accuracy and performance - Window size: Larger windows increase computation time but provide more robust error estimates
- Debounce duration: Balance between noise suppression and alert responsiveness
- Notification throttling: Built-in retry logic prevents notification spam
- Memory usage: Plugin processes data in pandas DataFrames - consider memory for large datasets
Report an issue
For plugin issues, see the Plugins repository issues page.
Find support for InfluxDB 3 Enterprise
The InfluxDB Discord server is the best place to find support for InfluxDB 3 Core and InfluxDB 3 Enterprise. For other InfluxDB versions, see the Support and feedback options.
Was this page helpful?
Thank you for your feedback!
Support and feedback
Thank you for being part of our community! We welcome and encourage your feedback and bug reports for InfluxDB 3 Enterprise and this documentation. To find support, use the following resources:
Customers with an annual or support contract can contact InfluxData Support. Customers using a trial license can email trial@influxdata.com for assistance.