Basic transformation plugin
The Basic Transformation Plugin enables real-time and scheduled transformation of time series data in InfluxDB 3 Enterprise. Transform field and tag names, convert values between units, and apply custom string replacements to standardize or clean your data. The plugin supports both scheduled batch processing of historical data and real-time transformation as data is written.
Configuration
Plugin parameters may be specified as key-value pairs in the --trigger-arguments flag (CLI) or in the trigger_arguments field (API) when creating a trigger. Some plugins support TOML configuration files, which can be specified using the plugin’s config_file_path parameter.
If a plugin supports multiple trigger specifications, some parameters may depend on the trigger specification that you use.
Plugin metadata
This plugin includes a JSON metadata schema in its docstring that defines supported trigger types and configuration parameters. This metadata enables the InfluxDB 3 Explorer UI to display and configure the plugin.
Required parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
measurement | string | required | Source measurement containing data to transform |
target_measurement | string | required | Destination measurement for transformed data |
target_database | string | current database | Database for storing transformed data |
dry_run | string | “false” | When “true”, logs transformations without writing |
Transformation parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
names_transformations | string | none | Field/tag name transformation rules. Format: 'field1:"transform1 transform2".field2:"transform3"' |
values_transformations | string | none | Field value transformation rules. Format: 'field1:"transform1".field2:"transform2"' |
custom_replacements | string | none | Custom string replacements. Format: 'rule_name:"find=replace"' |
custom_regex | string | none | Regex patterns for field matching. Format: 'pattern_name:"temp%"' |
Data selection parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
window | string | required (scheduled only) | Historical data window. Format: <number><unit> (for example, “30d”, “1h”) |
included_fields | string | all fields and tags | Dot-separated list of fields and tags to include (for example, “temp.humidity.location”) |
excluded_fields | string | none | Dot-separated list of fields and tags to exclude |
filters | string | none | Query filters. Format: 'field:"operator value"' |
TOML configuration
| Parameter | Type | Default | Description |
|---|---|---|---|
config_file_path | string | none | TOML config file path relative to PLUGIN_DIR (required for TOML configuration) |
To use a TOML configuration file, set the PLUGIN_DIR environment variable and specify the config_file_path in the trigger arguments. This is in addition to the --plugin-dir flag when starting InfluxDB 3 Enterprise.
Example TOML configurations
- basic_transformation_config_scheduler.toml - for scheduled triggers
- basic_transformation_config_data_writes.toml - for data write triggers
For more information on using TOML configuration files, see the Using TOML Configuration Files section in the influxdb3_plugins/README.md.
Data requirements
The plugin assumes that the table schema is already defined in the database, as it relies on this schema to retrieve field and tag names required for processing.
Software Requirements
- InfluxDB 3 Enterprise: with the Processing Engine enabled
- Python packages:
pint(for unit conversions)
Schema requirements
The plugin assumes that the table schema is already defined in the database, as it relies on this schema to retrieve field and tag names required for processing.
Requires existing schema
By design, the plugin returns an error if the schema doesn’t exist or doesn’t contain the expected columns.
Installation steps
Start InfluxDB 3 Enterprise with the Processing Engine enabled (
--plugin-dir /path/to/plugins):influxdb3 serve \ --node-id node0 \ --object-store file \ --data-dir ~/.influxdb3 \ --plugin-dir ~/.pluginsInstall required Python packages:
influxdb3 install package pint
Trigger setup
Scheduled transformation
Run transformations periodically on historical data:
influxdb3 create trigger \
--database mydb \
--path "gh:influxdata/basic_transformation/basic_transformation.py" \
--trigger-spec "every:1h" \
--trigger-arguments 'measurement=temperature,window=24h,target_measurement=temperature_normalized,names_transformations=temp:"snake",values_transformations=temp:"convert_degC_to_degF"' \
hourly_temp_transformReal-time transformation
Transform data as it’s written:
influxdb3 create trigger \
--database mydb \
--path "gh:influxdata/basic_transformation/basic_transformation.py" \
--trigger-spec "all_tables" \
--trigger-arguments 'measurement=sensor_data,target_measurement=sensor_data_clean,names_transformations=.*:"snake remove_special_chars normalize_underscores"' \
realtime_cleanExample usage
Example 1: Temperature unit conversion
Convert temperature readings from Celsius to Fahrenheit while standardizing field names:
# Create the trigger
influxdb3 create trigger \
--database weather \
--path "gh:influxdata/basic_transformation/basic_transformation.py" \
--trigger-spec "every:30m" \
--trigger-arguments 'measurement=raw_temps,window=1h,target_measurement=temps_fahrenheit,names_transformations=Temperature:"snake",values_transformations=temperature:"convert_degC_to_degF"' \
temp_converter
# Write test data
influxdb3 write \
--database weather \
"raw_temps,location=office Temperature=22.5"
# Query transformed data (after trigger runs)
influxdb3 query \
--database weather \
"SELECT * FROM temps_fahrenheit"Expected output
| location | temperature | time |
|---|---|---|
| office | 72.5 | 2024-01-01T00:00:00Z |
Transformation details:
- Before:
Temperature=22.5(Celsius) - After:
temperature=72.5(Fahrenheit, field name converted to snake_case)
Example 2: Field name standardization
Clean and standardize field names from various sensors:
# Create trigger with multiple transformations
influxdb3 create trigger \
--database sensors \
--path "gh:influxdata/basic_transformation/basic_transformation.py" \
--trigger-spec "all_tables" \
--trigger-arguments 'measurement=raw_sensors,target_measurement=clean_sensors,names_transformations=.*:"remove_special_chars snake collapse_underscore trim_underscore"' \
field_cleaner
# Write data with inconsistent field names
influxdb3 write \
--database sensors \
"raw_sensors,device=sensor1 \"Room Temperature\"=20.1,\"__Humidity_%\"=45.2"
# Query cleaned data
influxdb3 query \
--database sensors \
"SELECT * FROM clean_sensors"Expected output
| device | room_temperature | humidity | time |
|---|---|---|---|
| sensor1 | 20.1 | 45.2 | 2024-01-01T00:00:00Z |
Transformation details:
- Before:
"Room Temperature"=20.1,"__Humidity_%"=45.2 - After:
room_temperature=20.1,humidity=45.2(field names standardized)
Example 3: Custom string replacements
Replace specific strings in field values:
# Create trigger with custom replacements
influxdb3 create trigger \
--database inventory \
--path "gh:influxdata/basic_transformation/basic_transformation.py" \
--trigger-spec "every:1d" \
--trigger-arguments 'measurement=products,window=7d,target_measurement=products_updated,values_transformations=status:"status_replace",custom_replacements=status_replace:"In Stock=available.Out of Stock=unavailable"' \
status_updaterUsing TOML Configuration Files
This plugin supports using TOML configuration files to specify all plugin arguments. This is useful for complex configurations or when you want to version control your plugin settings.
Important Requirements
To use TOML configuration files, you must set the PLUGIN_DIR environment variable in the InfluxDB 3 Enterprise host environment. This is required in addition to the --plugin-dir flag when starting InfluxDB 3 Enterprise:
--plugin-dirtells InfluxDB 3 Enterprise where to find plugin Python filesPLUGIN_DIRenvironment variable tells the plugins where to find TOML configuration files
Setting Up TOML Configuration
Start InfluxDB 3 Enterprise with the PLUGIN_DIR environment variable set:
PLUGIN_DIR=~/.plugins influxdb3 serve \ --node-id node0 \ --object-store file \ --data-dir ~/.influxdb3 \ --plugin-dir ~/.pluginsCopy the example TOML configuration file to your plugin directory:
cp basic_transformation_config_scheduler.toml ~/.plugins/ # or for data writes: cp basic_transformation_config_data_writes.toml ~/.plugins/Edit the TOML file to match your requirements. The TOML file contains all the arguments defined in the plugin’s argument schema (see the JSON schema in the docstring at the top of basic_transformation.py).
Create a trigger using the
config_file_pathargument:influxdb3 create trigger \ --database mydb \ --path "gh:influxdata/basic_transformation/basic_transformation.py" \ --trigger-spec "every:1d" \ --trigger-arguments config_file_path=basic_transformation_config_scheduler.toml \ basic_transform_trigger
Code overview
Files
basic_transformation.py: The main plugin code containing handlers for scheduled tasks and data write transformationsbasic_transformation_config_data_writes.toml: Example TOML configuration file for data write triggersbasic_transformation_config_scheduler.toml: Example TOML configuration file for scheduled triggers
Logging
Logs are stored in the trigger’s database in the system.processing_engine_logs table. To view logs:
influxdb3 query --database YOUR_DATABASE "SELECT * FROM system.processing_engine_logs WHERE trigger_name = 'your_trigger_name'"Log columns:
- event_time: Timestamp of the log event
- trigger_name: Name of the trigger that generated the log
- log_level: Severity level (INFO, WARN, ERROR)
- log_text: Message describing the action or error
Main functions
process_scheduled_call(influxdb3_local, call_time, args)
Handles scheduled transformation tasks. Queries historical data within the specified window and applies transformations.
Key operations:
- Parses configuration from arguments
- Queries source measurement with filters
- Applies name and value transformations
- Writes transformed data to target measurement
process_writes(influxdb3_local, table_batches, args)
Handles real-time transformation during data writes. Processes incoming data batches and applies transformations before writing.
Key operations:
- Filters relevant table batches
- Applies transformations to each row
- Writes to target measurement immediately
apply_transformations(value, transformations)
Core transformation engine that applies a chain of transformations to a value.
Supported transformations:
Case conversions:
lower- Convert to lowercaseupper- Convert to uppercasesnake- Convert to snake_casecamel- Convert to camelCasepascal- Convert to PascalCasekebab- Convert to kebab-casetitle- Convert to Title Casecapitalize_first- Capitalize first letter onlycapitalize_words- Capitalize each word
String cleaning and normalization:
space_to_underscore- Replace spaces with underscoresremove_space- Remove all spacesalnum_underscore_only- Keep only alphanumeric and underscore characterscollapse_underscore- Collapse multiple underscores into onetrim_underscore- Remove leading/trailing underscoresnormalize_whitespace- Normalize whitespace to single spacesnormalize_dashes- Normalize dashes and underscores to dashesnormalize_underscores- Normalize dashes and spaces to underscores
Character filtering:
remove_digits- Remove all digitsremove_punctuation- Remove punctuation markskeep_alphanumeric- Keep only letters and numbersremove_special_chars- Remove special characters (keep letters, numbers, spaces, _, -)
String extraction and filtering:
extract_numbers_only- Extract only numeric charactersextract_letters_only- Extract only alphabetic characters
Mathematical operations (for numeric values):
abs- Absolute valueround2- Round to 2 decimal placessqrt- Square rootln- Natural logarithmfloor- Round down to nearest integerceil- Round up to nearest integer
Value conversion and clamping:
to_percentage- Multiply by 100 (convert to percentage)from_percentage- Divide by 100 (convert from percentage)clamp_min_zero- Limit minimum value to zeroclamp_max_hundred- Limit maximum value to 100boolean_to_int- Convert boolean values to 1/0
Other operations:
reverse- Reverse the string- Unit conversions:
convert_<from>_to_<to> - Custom replacements: User-defined string substitutions
Troubleshooting
Common issues
Issue: Transformations not applying
Solution: Check that field names match exactly (case-sensitive). Use regex patterns for flexible matching:
--trigger-arguments 'custom_regex=temp_fields:"temp%",values_transformations=temp_fields:"convert_degC_to_degF"'Issue: “Permission denied” errors in logs
Solution: Ensure the plugin file has execute permissions:
chmod +x ~/.plugins/basic_transformation.pyIssue: Unit conversion failing
Solution: Verify unit names are valid pint units. Common units:
- Temperature:
degC,degF,degK - Length:
meter,foot,inch - Time:
second,minute,hour
Issue: No data in target measurement
Solution:
Check dry_run is not set to “true”
Verify source measurement contains data
Check logs for errors:
influxdb3 query \ --database YOUR_DATABASE \ "SELECT * FROM system.processing_engine_logs WHERE trigger_name = 'your_trigger_name'"
Debugging tips
Enable dry run to test transformations:
--trigger-arguments 'dry_run=true,...'Use specific time windows for testing:
--trigger-arguments 'window=1h,...'Check field names in source data:
influxdb3 query --database mydb "SHOW FIELD KEYS FROM measurement"
Performance considerations
- Field name caching reduces query overhead (1-hour cache)
- Batch processing for scheduled tasks improves throughput
- Retry mechanism (3 attempts) handles transient write failures
- Use filters to process only relevant data
Report an issue
For plugin issues, see the Plugins repository issues page.
Find support for InfluxDB 3 Enterprise
The InfluxDB Discord server is the best place to find support for InfluxDB 3 Core and InfluxDB 3 Enterprise. For other InfluxDB versions, see the Support and feedback options.
Was this page helpful?
Thank you for your feedback!
Support and feedback
Thank you for being part of our community! We welcome and encourage your feedback and bug reports for InfluxDB 3 Enterprise and this documentation. To find support, use the following resources:
Customers with an annual or support contract can contact InfluxData Support. Customers using a trial license can email trial@influxdata.com for assistance.