Processing engine and Python plugins
InfluxDB 3 Enterprise is in Public Beta
InfluxDB 3 Enterprise is in public beta and available for testing and feedback, but is not meant for production use yet. Both the product and this documentation are works in progress. We welcome and encourage your input about your experience with the beta and invite you to join our public channels for updates and to share feedback.
Use the InfluxDB 3 Processing engine to run Python code directly in your InfluxDB 3 Enterprise database to automatically process data and respond to database events.
The Processing engine is an embedded Python VM that runs inside your InfluxDB 3 database and lets you:
- Process data as it’s written to the database
- Run code on a schedule
- Create API endpoints that execute Python code
- Maintain state between executions with an in-memory cache
Learn how to create, configure, run, and extend Python plugins that execute when specific events occur.
Set up the Processing engine
To enable the Processing engine, start your InfluxDB server with the --plugin-dir
option:
influxdb3 serve \
--node-id node0 \
--object-store [OBJECT_STORE_TYPE] \
--plugin-dir /path/to/plugins
Add a Processing engine plugin
A plugin is a Python file that contains a specific function signature that corresponds to a trigger type. Plugins:
- Receive plugin-specific arguments (such as written data, call time, or an HTTP request)
- Can receive keyword arguments (as
args
) from trigger arguments - Can access the
influxdb3_local
shared API for writing, querying, and managing state
Get started using example plugins or create your own:
Get example plugins
InfluxData maintains a repository of contributed plugins that you can use as-is or as a starting point for your own plugin.
From local files
You can copy example plugins from the influxdb3_plugins repository to your local plugin directory:
# Clone the repository
git clone https://github.com/influxdata/influxdb3_plugins.git
# Copy example plugins to your plugin directory
cp -r influxdb3_plugins/examples/write/* /path/to/plugins/
Directly from GitHub
You can use plugins directly from GitHub without downloading them first by using the gh:
prefix in the plugin filename:
# Use a plugin directly from GitHub
influxdb3 create trigger \
--trigger-spec "every:1m" \
--plugin-filename "gh:examples/schedule/system_metrics/system_metrics.py" \
--database my_database \
system_metrics
Find and contribute plugins
The plugins repository includes examples for various use cases:
- Data transformation: Process and transform incoming data
- Alerting: Send notifications based on data thresholds
- Aggregation: Calculate statistics on time series data
- Integration: Connect to external services and APIs
- System monitoring: Track resource usage and health metrics
Visit influxdata/influxdb3_plugins to browse available plugins or contribute your own.
Create a plugin
- Create a
.py
file in your plugins directory - Define a function with one of the following signatures:
For data write events
def process_writes(influxdb3_local, table_batches, args=None):
# Process data as it's written to the database
for table_batch in table_batches:
table_name = table_batch["table_name"]
rows = table_batch["rows"]
# Log information about the write
influxdb3_local.info(f"Processing {len(rows)} rows from {table_name}")
# Write derived data back to the database
line = LineBuilder("processed_data")
line.tag("source_table", table_name)
line.int64_field("row_count", len(rows))
influxdb3_local.write(line)
For scheduled events
def process_scheduled_call(influxdb3_local, call_time, args=None):
# Run code on a schedule
# Query recent data
results = influxdb3_local.query("SELECT * FROM metrics WHERE time > now() - INTERVAL '1 hour'")
# Process the results
if results:
influxdb3_local.info(f"Found {len(results)} recent metrics")
else:
influxdb3_local.warn("No recent metrics found")
For HTTP requests
def process_request(influxdb3_local, query_parameters, request_headers, request_body, args=None):
# Handle HTTP requests to a custom endpoint
# Log the request parameters
influxdb3_local.info(f"Received request with parameters: {query_parameters}")
# Process the request body
if request_body:
import json
data = json.loads(request_body)
influxdb3_local.info(f"Request data: {data}")
# Return a response (automatically converted to JSON)
return {"status": "success", "message": "Request processed"}
After adding your plugin, you can install Python dependencies or learn how to extend plugins with API features and state management.
Create a trigger to run a plugin
A trigger connects your plugin to a specific database event. The plugin function signature in your plugin file determines which trigger specification you can choose for configuring and activating your plugin.
Create a trigger with the influxdb3 create trigger
command.
When specifying a local plugin file, the --plugin-filename
parameter
is relative to the --plugin-dir
configured for the server.
You don’t need to provide an absolute path.
Create a trigger for data writes
Use the table:<TABLE_NAME>
or the all_tables
trigger specification to configure
and run a plugin for data write events–for example:
# Trigger on writes to a specific table
# The plugin file must be in your configured plugin directory
influxdb3 create trigger \
--trigger-spec "table:sensor_data" \
--plugin-filename "process_sensors.py" \
--database my_database \
sensor_processor
# Trigger on writes to all tables
influxdb3 create trigger \
--trigger-spec "all_tables" \
--plugin-filename "process_all_data.py" \
--database my_database \
all_data_processor
The trigger runs when the database flushes ingested data for the specified tables to the Write-Ahead Log (WAL) in the Object store (default is every second).
The plugin receives the written data and table information.
Create a trigger for scheduled events
Use the every:<DURATION>
or the cron:<CRONTAB_EXPRESSION>
trigger specification
to configure and run a plugin for scheduled events–for example:
# Run every 5 minutes
influxdb3 create trigger \
--trigger-spec "every:5m" \
--plugin-filename "hourly_check.py" \
--database my_database \
regular_check
# Run on a cron schedule (8am daily)
influxdb3 create trigger \
--trigger-spec "cron:0 8 * * *" \
--plugin-filename "daily_report.py" \
--database my_database \
daily_report
The plugin receives the scheduled call time.
Create a trigger for HTTP requests
[For an HTTP request plugin], use the path:<ENDPOINT_PATH>
trigger specification to configure and enable a plugin for HTTP requests–for example:
# Create an endpoint at /api/v3/engine/webhook
influxdb3 create trigger \
--trigger-spec "path:webhook" \
--plugin-filename "webhook_handler.py" \
--database my_database \
webhook_processor
The trigger makes your endpoint available at /api/v3/engine/<ENDPOINT_PATH>
.
To run the plugin, send a GET
or POST
request to the endpoint–for example:
The plugin receives the HTTP request object with methods, headers, and body.
Use community plugins from GitHub
You can reference plugins directly from the GitHub repository by using the gh:
prefix:
# Create a trigger using a plugin from GitHub
influxdb3 create trigger \
--trigger-spec "every:1m" \
--plugin-filename "gh:examples/schedule/system_metrics/system_metrics.py" \
--database my_database \
system_metrics
Pass arguments to plugins
Use trigger arguments to pass configuration from a trigger to the plugin it runs. You can use this for:
- Threshold values for monitoring
- Connection properties for external services
- Configuration settings for plugin behavior
influxdb3 create trigger \
--trigger-spec "every:1h" \
--plugin-filename "threshold_check.py" \
--trigger-arguments threshold=90,notify_email=admin@example.com \
--database my_database \
threshold_monitor
The arguments are passed to the plugin as a Dict[str, str]
where the key is the argument name and the value is the argument value:
def process_scheduled_call(influxdb3_local, call_time, args=None):
if args and "threshold" in args:
threshold = float(args["threshold"])
email = args.get("notify_email", "default@example.com")
# Use the arguments in your logic
influxdb3_local.info(f"Checking threshold {threshold}, will notify {email}")
Control trigger execution
By default, triggers run synchronously—each instance waits for previous instances to complete before executing.
To allow multiple instances of the same trigger to run simultaneously, configure triggers to run asynchronously:
# Allow multiple trigger instances to run simultaneously
influxdb3 create trigger \
--trigger-spec "table:metrics" \
--plugin-filename "heavy_process.py" \
--run-asynchronous \
--database my_database \
async_processor
Configure error handling for a trigger
To configure error handling behavior for a trigger, use the --error-behavior <ERROR_BEHAVIOR>
CLI option with one of the following values:
log
(default): Log all plugin errors to stdout and thesystem.processing_engine_logs
system table.retry
: Attempt to run the plugin again immediately after an error.disable
: Automatically disable the plugin when an error occurs (can be re-enabled later via CLI).
# Automatically retry on error
influxdb3 create trigger \
--trigger-spec "table:important_data" \
--plugin-filename "critical_process.py" \
--error-behavior retry \
--database my_database \
critical_processor
# Disable the trigger on error
influxdb3 create trigger \
--trigger-spec "path:webhook" \
--plugin-filename "webhook_handler.py" \
--error-behavior disable \
--database my_database \
auto_disable_processor
Extend plugins with API features and state management
The Processing engine includes API capabilities that allow your plugins to interact with InfluxDB data and maintain state between executions. These features let you build more sophisticated plugins that can transform, analyze, and respond to data.
Use the shared API
All plugins have access to the shared API to interact with the database.
Write data
Use the LineBuilder
API to create line protocol data:
# Create a line protocol entry
line = LineBuilder("weather")
line.tag("location", "us-midwest")
line.float64_field("temperature", 82.5)
line.time_ns(1627680000000000000)
# Write the data to the database
influxdb3_local.write(line)
Writes are buffered while the plugin runs and are flushed when the plugin completes.
Query data
Execute SQL queries and get results:
# Simple query
results = influxdb3_local.query("SELECT * FROM metrics WHERE time > now() - INTERVAL '1 hour'")
# Parameterized query for safer execution
params = {"table": "metrics", "threshold": 90}
results = influxdb3_local.query("SELECT * FROM $table WHERE value > $threshold", params)
The shared API query
function returns results as a List
of Dict[String, Any]
, where the key is the column name and the value is the column value.
Log information
The shared API info
, warn
, and error
functions accept multiple arguments,
convert them to strings, and log them as a space-separated message to the database log,
which is output in the server logs and captured in system tables that you can
query using SQL.
Add logging to track plugin execution:
influxdb3_local.info("Starting data processing")
influxdb3_local.warn("Could not process some records")
influxdb3_local.error("Failed to connect to external API")
# Log structured data
obj_to_log = {"records": 157, "errors": 3}
influxdb3_local.info("Processing complete", obj_to_log)
Use the in-memory cache
The Processing engine provides an in-memory cache system that enables plugins to persist and retrieve data between executions.
Use the shared API cache
property to access the cache API.
# Basic usage pattern
influxdb3_local.cache.METHOD(PARAMETERS)
Method | Parameters | Returns | Description |
---|---|---|---|
put | key (str): The key to store the value undervalue (Any): Any Python object to cachettl (Optional[float], default=None): Time in seconds before expirationuse_global (bool, default=False): If True, uses global namespace | None | Stores a value in the cache with an optional time-to-live |
get | key (str): The key to retrievedefault (Any, default=None): Value to return if key not founduse_global (bool, default=False): If True, uses global namespace | Any | Retrieves a value from the cache or returns default if not found |
delete | key (str): The key to deleteuse_global (bool, default=False): If True, uses global namespace | bool | Deletes a value from the cache. Returns True if deleted, False if not found |
Cache namespaces
The cache system offers two distinct namespaces:
Namespace | Scope | Best For |
---|---|---|
Trigger-specific (default) | Isolated to a single trigger | Plugin state, counters, timestamps specific to one plugin |
Global | Shared across all triggers | Configuration, lookup tables, service states that should be available to all plugins |
Store and retrieve cached data
# Store a value
influxdb3_local.cache.put("last_run_time", time.time())
# Retrieve a value with a default if not found
last_time = influxdb3_local.cache.get("last_run_time", default=0)
# Delete a cached value
influxdb3_local.cache.delete("temporary_data")
Store cached data with expiration
# Cache with a 5-minute TTL (time-to-live)
influxdb3_local.cache.put("api_response", response_data, ttl=300)
Share data across plugins
# Store in the global namespace
influxdb3_local.cache.put("config", {"version": "1.0"}, use_global=True)
# Retrieve from the global namespace
config = influxdb3_local.cache.get("config", use_global=True)
Track state between executions
# Get current counter or default to 0
counter = influxdb3_local.cache.get("execution_count", default=0)
# Increment counter
counter += 1
# Store the updated value
influxdb3_local.cache.put("execution_count", counter)
influxdb3_local.info(f"This plugin has run {counter} times")
Best practices for in-memory caching
- Use the trigger-specific namespace
- Use TTL appropriately
- Cache computation results
- Warm the cache
- Consider cache limitations
Use the trigger-specific namespace
The cache is designed to support stateful operations while maintaining isolation between different triggers. Use the trigger-specific namespace for most operations and the global namespace only when data sharing across triggers is necessary.
Use TTL appropriately
Set realistic expiration times based on how frequently data changes.
# Cache external API responses for 5 minutes
influxdb3_local.cache.put("weather_data", api_response, ttl=300)
Cache computation results
Store the results of expensive calculations that need to be utilized frequently.
# Cache aggregated statistics
influxdb3_local.cache.put("daily_stats", calculate_statistics(data), ttl=3600)
Warm the cache
For critical data, prime the cache at startup. This can be especially useful for global namespace data where multiple triggers need the data.
# Check if cache needs to be initialized
if not influxdb3_local.cache.get("lookup_table"):
influxdb3_local.cache.put("lookup_table", load_lookup_data())
Consider cache limitations
- Memory Usage: Since cache contents are stored in memory, monitor your memory usage when caching large datasets.
- Server Restarts: Because the cache is cleared when the server restarts, design your plugins to handle cache initialization (as noted above).
- Concurrency: Be cautious of accessing inaccurate or out-of-date data when multiple trigger instances might simultaneously update the same cache key.
Install Python dependencies
If your plugin needs additional Python packages, use the influxdb3 install
command:
# Install a package directly
influxdb3 install package pandas
# With Docker
docker exec -it CONTAINER_NAME influxdb3 install package pandas
This creates a Python virtual environment in your plugins directory with the specified packages installed.
Was this page helpful?
Thank you for your feedback!
Support and feedback
Thank you for being part of our community! We welcome and encourage your feedback and bug reports for InfluxDB 3 Enterprise and this documentation. To find support, use the following resources:
Customers with an annual or support contract can contact InfluxData Support.