Stateless ADTK detector plugin
The ADTK Anomaly Detector Plugin provides advanced time series anomaly detection for InfluxDB 3 Core using the ADTK (Anomaly Detection Toolkit) library. Apply statistical and machine learning-based detection methods to identify outliers, level shifts, volatility changes, and seasonal anomalies in your data. Features consensus-based detection requiring multiple detectors to agree before triggering alerts, reducing false positives.
Configuration
Plugin parameters may be specified as key-value pairs in the --trigger-arguments flag (CLI) or in the trigger_arguments field (API) when creating a trigger. Some plugins support TOML configuration files, which can be specified using the plugin’s config_file_path parameter.
If a plugin supports multiple trigger specifications, some parameters may depend on the trigger specification that you use.
Plugin metadata
This plugin includes a JSON metadata schema in its docstring that defines supported trigger types and configuration parameters. This metadata enables the InfluxDB 3 Explorer UI to display and configure the plugin.
Required parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
measurement | string | required | Measurement to analyze for anomalies |
field | string | required | Numeric field to evaluate |
detectors | string | required | Dot-separated list of advanced ADTK detectors for different anomaly types |
detector_params | string | required | Base64-encoded JSON parameters for each detector |
window | string | required | Data analysis window with flexible scheduling. Format: <number><unit> (for example, “1h”, “30m”) |
senders | string | required | Dot-separated notification channels with multi-channel notification support |
Advanced parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
min_consensus | number | 1 | Minimum detectors required to agree for consensus-based filtering to reduce false positives |
min_condition_duration | string | “0s” | Minimum duration for configurable anomaly persistence before alerting |
Notification parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
influxdb3_auth_token | string | env var | InfluxDB 3 Core API token |
notification_text | string | template | Customizable notification template message with dynamic variables |
notification_path | string | “notify” | Notification endpoint path |
port_override | number | 8181 | InfluxDB port override |
TOML configuration
| Parameter | Type | Default | Description |
|---|---|---|---|
config_file_path | string | none | TOML config file path relative to PLUGIN_DIR (required for TOML configuration) |
To use a TOML configuration file, set the PLUGIN_DIR environment variable and specify the config_file_path in the trigger arguments. This is in addition to the --plugin-dir flag when starting InfluxDB 3 Core.
Example TOML configuration
adtk_anomaly_config_scheduler.toml
For more information on using TOML configuration files, see the Using TOML Configuration Files section in the influxdb3_plugins/README.md.
Supported ADTK detectors
| Detector | Description | Required Parameters |
|---|---|---|
GeneralizedESDTestAD | Extreme Studentized Deviate test | alpha (optional) |
InterQuartileRangeAD | Detects outliers using IQR method | None |
ThresholdAD | Detects values above/below thresholds | high, low (optional) |
QuantileAD | Detects outliers based on quantiles | low, high (optional) |
LevelShiftAD | Detects sudden level changes | window (int) |
VolatilityShiftAD | Detects volatility changes | window (int) |
PersistAD | Detects persistent anomalous values | None |
SeasonalAD | Detects seasonal pattern deviations | None |
Software Requirements
- InfluxDB 3 Core: with the Processing Engine enabled.
- Python packages:
adtk(for anomaly detection)pandas(for data manipulation)requests(for HTTP notifications)
- Notification Sender Plugin (optional): Required if using the
sendersparameter. See the influxdata/notifier plugin.
Installation steps
Start InfluxDB 3 Core with the Processing Engine enabled (
--plugin-dir /path/to/plugins):influxdb3 serve \ --node-id node0 \ --object-store file \ --data-dir ~/.influxdb3 \ --plugin-dir ~/.pluginsInstall required Python packages:
influxdb3 install package requests influxdb3 install package adtk influxdb3 install package pandas(Optional) For notifications, install the influxdata/notifier plugin and create an HTTP trigger for it.
Trigger setup
Scheduled trigger
Create a scheduled trigger for anomaly detection:
influxdb3 create trigger \
--database mydb \
--path "gh:influxdata/stateless_adtk_detector/adtk_anomaly_detection_plugin.py" \
--trigger-spec "every:10m" \
--trigger-arguments "measurement=cpu,field=usage,detectors=QuantileAD.LevelShiftAD,detector_params=eyJRdWFudGlsZUFKIjogeyJsb3ciOiAwLjA1LCAiaGlnaCI6IDAuOTV9LCAiTGV2ZWxTaGlmdEFKIjogeyJ3aW5kb3ciOiA1fX0=,window=10m,senders=slack,slack_webhook_url=$SLACK_WEBHOOK_URL" \
anomaly_detectorSet SLACK_WEBHOOK_URL to your Slack incoming webhook URL.
Enable trigger
influxdb3 enable trigger --database mydb anomaly_detectorExample usage
Example 1: Quantile-based detection
Detect outliers using quantile-based detection. This plugin analyzes existing time series data and sends notifications when anomalies are detected.
# Base64 encode detector parameters: {"QuantileAD": {"low": 0.05, "high": 0.95}}
echo '{"QuantileAD": {"low": 0.05, "high": 0.95}}' | base64
influxdb3 create trigger \
--database sensors \
--path "gh:influxdata/stateless_adtk_detector/adtk_anomaly_detection_plugin.py" \
--trigger-spec "every:5m" \
--trigger-arguments "measurement=temperature,field=value,detectors=QuantileAD,detector_params=eyJRdWFudGlsZUFKIjogeyJsb3ciOiAwLjA1LCAiaGlnaCI6IDAuOTV9fQ==,window=1h,senders=slack,slack_webhook_url=$SLACK_WEBHOOK_URL" \
temp_anomaly_detectorSet SLACK_WEBHOOK_URL to your Slack incoming webhook URL.
Example 2: Multi-detector consensus
Use multiple detectors with consensus requirement:
# Base64 encode: {"QuantileAD": {"low": 0.1, "high": 0.9}, "LevelShiftAD": {"window": 10}}
echo '{"QuantileAD": {"low": 0.1, "high": 0.9}, "LevelShiftAD": {"window": 10}}' | base64
influxdb3 create trigger \
--database monitoring \
--path "gh:influxdata/stateless_adtk_detector/adtk_anomaly_detection_plugin.py" \
--trigger-spec "every:15m" \
--trigger-arguments "measurement=cpu_metrics,field=utilization,detectors=QuantileAD.LevelShiftAD,detector_params=eyJRdWFudGlsZUFEIjogeyJsb3ciOiAwLjEsICJoaWdoIjogMC45fSwgIkxldmVsU2hpZnRBRCI6IHsid2luZG93IjogMTB9fQ==,min_consensus=2,window=30m,senders=discord,discord_webhook_url=$DISCORD_WEBHOOK_URL" \
cpu_consensus_detectorSet DISCORD_WEBHOOK_URL to your Discord incoming webhook URL.
Volatility shift detection
Monitor for sudden changes in data volatility:
# Base64 encode: {"VolatilityShiftAD": {"window": 20}}
echo '{"VolatilityShiftAD": {"window": 20}}' | base64
influxdb3 create trigger \
--database trading \
--path "gh:influxdata/stateless_adtk_detector/adtk_anomaly_detection_plugin.py" \
--trigger-spec "every:1m" \
--trigger-arguments "measurement=stock_prices,field=price,detectors=VolatilityShiftAD,detector_params=eyJWb2xhdGlsaXR5U2hpZnRBRCI6IHsid2luZG93IjogMjB9fQ==,window=1h,min_condition_duration=5m,senders=sms,twilio_from_number=+1234567890,twilio_to_number=+0987654321" \
volatility_detectorCode overview
Files
adtk_anomaly_detection_plugin.py: The main plugin code containing the scheduled handler for anomaly detectionadtk_anomaly_config_scheduler.toml: Example TOML configuration file
Logging
Logs are stored in the trigger’s database in the system.processing_engine_logs table. To view logs:
influxdb3 query --database YOUR_DATABASE "SELECT * FROM system.processing_engine_logs WHERE trigger_name = 'anomaly_detector'"Main functions
process_scheduled_call(influxdb3_local, call_time, args)
Handles scheduled anomaly detection tasks. Queries data within the specified window, applies ADTK detectors, and sends notifications for detected anomalies.
Key operations:
- Parses configuration and decodes detector parameters
- Queries data from source measurement
- Applies configured ADTK detectors
- Evaluates consensus across detectors
- Sends notifications when anomalies are confirmed
Troubleshooting
Common issues
Issue: Detector parameter encoding errors
Solution: Ensure detector_params is valid Base64-encoded JSON. Use command line Base64 encoding: echo '{"QuantileAD": {"low": 0.05}}' | base64. Verify JSON structure matches detector requirements.
Issue: False positive notifications
Solution: Increase min_consensus to require more detectors to agree. Add min_condition_duration to require anomalies to persist. Adjust detector-specific thresholds in detector_params.
Issue: Missing dependencies
Solution: Install required packages: adtk, pandas, requests. Ensure the Notifier Plugin is installed for notifications.
Issue: Data quality issues
Solution: Verify sufficient data points in the specified window. Check for null values or data gaps that affect detection. Ensure field contains numeric data suitable for analysis.
Base64 parameter encoding
Generate properly encoded detector parameters:
# Single detector
echo '{"QuantileAD": {"low": 0.05, "high": 0.95}}' | base64 -w 0
# Multiple detectors
echo '{"QuantileAD": {"low": 0.1, "high": 0.9}, "LevelShiftAD": {"window": 15}}' | base64 -w 0
# Threshold detector
echo '{"ThresholdAD": {"high": 100, "low": 10}}' | base64 -w 0Message template variables
Available variables for notification templates:
$table: Measurement name$field: Field name with anomaly$value: Anomalous value$detectors: List of detecting methods$tags: Tag values$timestamp: Anomaly timestamp
Detector configuration reference
For detailed detector parameters and options, see the ADTK documentation.
Report an issue
For plugin issues, see the Plugins repository issues page.
Find support for InfluxDB 3 Core
The InfluxDB Discord server is the best place to find support for InfluxDB 3 Core and InfluxDB 3 Enterprise. For other InfluxDB versions, see the Support and feedback options.
Was this page helpful?
Thank you for your feedback!
Support and feedback
Thank you for being part of our community! We welcome and encourage your feedback and bug reports for InfluxDB 3 Core and this documentation. To find support, use the following resources:
Customers with an annual or support contract can contact InfluxData Support.