Flux built-in transformation functions
Flux’s built-in transformation functions transform or shape your data in specific ways. There are different types of transformations categorized below:
Built-in aggregate transformations
Flux’s aggregate transformations take values from an input table and aggregate them in some way. Output tables contain a single row with the aggregated value.
Built-in selector functions
Flux’s built-in selector functions return one or more records based on function logic.
Built-in type conversion functions
Flux’s built-in built-in type conversion functions convert columns of the input table into a specific data type.
Stream and table functions
Use stream and table functions to extract a table from a stream of tables and access its columns and records.
Generic transformations
- chandeMomentumOscillator()
- columns()
- cov()
- covariance()
- cumulativeSum()
- derivative()
- difference()
- doubleEMA()
- drop()
- duplicate()
- elapsed()
- exponentialMovingAverage()
- fill()
- filter()
- group()
- histogram()
- holtWinters()
- hourSelection()
- increase()
- join()
- kaufmansAMA()
- kaufmansER()
- keep()
- keys()
- keyValues()
- limit()
- map()
- movingAverage()
- pearsonr()
- pivot()
- range()
- relativeStrengthIndex()
- rename()
- set()
- sort()
- stateCount()
- stateDuration()
- tail()
- timedMovingAverage()
- timeShift()
- tripleEMA()
- tripleExponentialDerivative()
- truncateTimeColumn()
- union()
- window()
Support and feedback
Thank you for being part of our community! We welcome and encourage your feedback and bug reports for InfluxDB and this documentation. To find support, the following resources are available:
InfluxDB Cloud and InfluxDB Enterprise customers can contact InfluxData Support.