Documentation

Create histograms with Flux

This page documents an earlier version of InfluxDB. InfluxDB v2 is the latest stable version. See the equivalent InfluxDB v2 documentation: Create histograms with Flux.

Histograms provide valuable insight into the distribution of your data. This guide walks through using Flux’s histogram() function to transform your data into a cumulative histogram.

histogram() function

The histogram() function approximates the cumulative distribution of a dataset by counting data frequencies for a list of “bins.” A bin is simply a range in which a data point falls. All data points that are less than or equal to the bound are counted in the bin. In the histogram output, a column is added (le) that represents the upper bounds of of each bin. Bin counts are cumulative.

from(bucket:"telegraf/autogen")
  |> range(start: -5m)
  |> filter(fn: (r) =>
    r._measurement == "mem" and
    r._field == "used_percent"
  )
  |> histogram(bins: [0.0, 10.0, 20.0, 30.0])

Values output by the histogram function represent points of data aggregated over time. Since values do not represent single points in time, there is no _time column in the output table.

Bin helper functions

Flux provides two helper functions for generating histogram bins. Each generates and outputs an array of floats designed to be used in the histogram() function’s bins parameter.

linearBins()

The linearBins() function generates a list of linearly separated floats.

linearBins(start: 0.0, width: 10.0, count: 10)

// Generated list: [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, +Inf]

logarithmicBins()

The logarithmicBins() function generates a list of exponentially separated floats.

logarithmicBins(start: 1.0, factor: 2.0, count: 10, infinity: true)

// Generated list: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, +Inf]

Examples

Generating a histogram with linear bins

from(bucket:"telegraf/autogen")
  |> range(start: -5m)
  |> filter(fn: (r) =>
    r._measurement == "mem" and
    r._field == "used_percent"
  )
  |> histogram(
    bins: linearBins(
      start:65.5,
      width: 0.5,
      count: 20,
      infinity:false
    )
  )
Output table
Table: keys: [_start, _stop, _field, _measurement, host]
                   _start:time                      _stop:time           _field:string     _measurement:string               host:string                      le:float                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------  ----------------------------  ----------------------------
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                          65.5                             5
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                            66                             6
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                          66.5                             8
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                            67                             9
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                          67.5                             9
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                            68                            10
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                          68.5                            12
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                            69                            12
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                          69.5                            15
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                            70                            23
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                          70.5                            30
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                            71                            30
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                          71.5                            30
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                            72                            30
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                          72.5                            30
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                            73                            30
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                          73.5                            30
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                            74                            30
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                          74.5                            30
2018-11-07T22:19:58.423658000Z  2018-11-07T22:24:58.423658000Z            used_percent                     mem  Scotts-MacBook-Pro.local                            75                            30

Generating a histogram with logarithmic bins

from(bucket:"telegraf/autogen")
  |> range(start: -5m)
  |> filter(fn: (r) =>
    r._measurement == "mem" and
    r._field == "used_percent"
  )
  |> histogram(
    bins: logarithmicBins(
      start:0.5,
      factor: 2.0,
      count: 10,
      infinity:false
    )
  )
Output table
Table: keys: [_start, _stop, _field, _measurement, host]
                   _start:time                      _stop:time           _field:string     _measurement:string               host:string                      le:float                  _value:float
------------------------------  ------------------------------  ----------------------  ----------------------  ------------------------  ----------------------------  ----------------------------
2018-11-07T22:23:36.860664000Z  2018-11-07T22:28:36.860664000Z            used_percent                     mem  Scotts-MacBook-Pro.local                           0.5                             0
2018-11-07T22:23:36.860664000Z  2018-11-07T22:28:36.860664000Z            used_percent                     mem  Scotts-MacBook-Pro.local                             1                             0
2018-11-07T22:23:36.860664000Z  2018-11-07T22:28:36.860664000Z            used_percent                     mem  Scotts-MacBook-Pro.local                             2                             0
2018-11-07T22:23:36.860664000Z  2018-11-07T22:28:36.860664000Z            used_percent                     mem  Scotts-MacBook-Pro.local                             4                             0
2018-11-07T22:23:36.860664000Z  2018-11-07T22:28:36.860664000Z            used_percent                     mem  Scotts-MacBook-Pro.local                             8                             0
2018-11-07T22:23:36.860664000Z  2018-11-07T22:28:36.860664000Z            used_percent                     mem  Scotts-MacBook-Pro.local                            16                             0
2018-11-07T22:23:36.860664000Z  2018-11-07T22:28:36.860664000Z            used_percent                     mem  Scotts-MacBook-Pro.local                            32                             0
2018-11-07T22:23:36.860664000Z  2018-11-07T22:28:36.860664000Z            used_percent                     mem  Scotts-MacBook-Pro.local                            64                             2
2018-11-07T22:23:36.860664000Z  2018-11-07T22:28:36.860664000Z            used_percent                     mem  Scotts-MacBook-Pro.local                           128                            30
2018-11-07T22:23:36.860664000Z  2018-11-07T22:28:36.860664000Z            used_percent                     mem  Scotts-MacBook-Pro.local                           256                            30

Was this page helpful?

Thank you for your feedback!


The future of Flux

Flux is going into maintenance mode. You can continue using it as you currently are without any changes to your code.

Read more

InfluxDB v3 enhancements and InfluxDB Clustered is now generally available

New capabilities, including faster query performance and management tooling advance the InfluxDB v3 product line. InfluxDB Clustered is now generally available.

InfluxDB v3 performance and features

The InfluxDB v3 product line has seen significant enhancements in query performance and has made new management tooling available. These enhancements include an operational dashboard to monitor the health of your InfluxDB cluster, single sign-on (SSO) support in InfluxDB Cloud Dedicated, and new management APIs for tokens and databases.

Learn about the new v3 enhancements


InfluxDB Clustered general availability

InfluxDB Clustered is now generally available and gives you the power of InfluxDB v3 in your self-managed stack.

Talk to us about InfluxDB Clustered