Calculate the moving average
Use movingAverage()
or timedMovingAverage()
to return the moving average of data.
data
|> movingAverage(n: 5)
// OR
data
|> timedMovingAverage(every: 5m, period: 10m)
movingAverage()
For each row in a table, movingAverage()
returns the average of the current value and
previous values where n
is the total number of values used to calculate the average.
If n = 3
:
Row # | Calculation |
---|---|
1 | Insufficient number of rows |
2 | Insufficient number of rows |
3 | (Row1 + Row2 + Row3) / 3 |
4 | (Row2 + Row3 + Row4) / 3 |
5 | (Row3 + Row4 + Row5) / 3 |
Given the following input:
_time | _value |
---|---|
2020-01-01T00:01:00Z | 1.0 |
2020-01-01T00:02:00Z | 1.2 |
2020-01-01T00:03:00Z | 1.8 |
2020-01-01T00:04:00Z | 0.9 |
2020-01-01T00:05:00Z | 1.4 |
2020-01-01T00:06:00Z | 2.0 |
The following would return:
|> movingAverage(n: 3)
_time | _value |
---|---|
2020-01-01T00:03:00Z | 1.33 |
2020-01-01T00:04:00Z | 1.30 |
2020-01-01T00:05:00Z | 1.36 |
2020-01-01T00:06:00Z | 1.43 |
timedMovingAverage()
For each row in a table, timedMovingAverage()
returns the average of the
current value and all row values in the previous period
(duration).
It returns moving averages at a frequency defined by the every
parameter.
Each color in the diagram below represents a period of time used to calculate an
average and the time a point representing the average is returned.
If every = 30m
and period = 1h
:
Given the following input:
_time | _value |
---|---|
2020-01-01T00:00:00Z | 1.0 |
2020-01-01T00:30:00Z | 1.2 |
2020-01-01T01:00:00Z | 1.8 |
2020-01-01T01:30:00Z | 0.9 |
2020-01-01T02:00:00Z | 1.4 |
2020-01-01T02:30:00Z | 2.0 |
2020-01-01T03:00:00Z | 1.9 |
The following would return:
|> timedMovingAverage(every: 30m, period: 1h)
_time | _value |
---|---|
2020-01-01T00:30:00Z | 1.0 |
2020-01-01T01:00:00Z | 1.1 |
2020-01-01T01:30:00Z | 1.5 |
2020-01-01T02:00:00Z | 1.35 |
2020-01-01T02:30:00Z | 1.15 |
2020-01-01T03:00:00Z | 1.7 |
2020-01-01T03:00:00Z | 2 |
Was this page helpful?
Thank you for your feedback!
Support and feedback
Thank you for being part of our community! We welcome and encourage your feedback and bug reports for InfluxDB and this documentation. To find support, use the following resources:
Customers with an annual or support contract can contact InfluxData Support.