Operate on columns
Use the following common queries to operate on columns:
These examples use NOAA water sample data.
Find and count unique values in a column
Find and count the number of unique values in a specified column. The following examples find and count unique locations where data was collected.
Find unique values
This query:
- Uses
group()
to ungroup data and return results in a single table. - Uses
keep()
andunique()
to return unique values in the specified column.
from(bucket: "noaa")
|> range(start: -30d)
|> group()
|> keep(columns: ["location"])
|> unique(column: "location")
Example results
location |
---|
coyote_creek |
santa_monica |
Count unique values
This query:
- Uses
group()
to ungroup data and return results in a single table. - Uses
keep()
,unique()
, and thencount()
to count the number of unique values.
from(bucket: "noaa")
|> group()
|> unique(column: "location")
|> count(column: "location")
Example results
location |
---|
2 |
Recalculate the _values column
To recalculate the _value
column, use the with
operator in map()
to overwrite the existing _value
column.
The following query:
- Uses
filter()
to filter theaverage_temperature
measurement. - Uses
map()
to convert Fahrenheit temperature values into Celsius.
from(bucket: "noaa")
|> filter(fn: (r) => r._measurement == "average_temperature")
|> range(start: -30d)
|> map(fn: (r) => ({r with _value: (float(v: r._value) - 32.0) * 5.0 / 9.0} ))
_field | _measurement | _start | _stop | _time | location | _value |
---|---|---|---|---|---|---|
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:00:00Z | coyote_creek | 27.77777777777778 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:06:00Z | coyote_creek | 22.77777777777778 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:12:00Z | coyote_creek | 30 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:18:00Z | coyote_creek | 31.666666666666668 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:24:00Z | coyote_creek | 25 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:30:00Z | coyote_creek | 21.11111111111111 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:36:00Z | coyote_creek | 28.88888888888889 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:42:00Z | coyote_creek | 24.444444444444443 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:48:00Z | coyote_creek | 29.444444444444443 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T00:54:00Z | coyote_creek | 26.666666666666668 |
degrees | average_temperature | 1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | 2019-08-17T01:00:00Z | coyote_creek | 21.11111111111111 |
••• | ••• | ••• | ••• | ••• | ••• | ••• |
Calculate a new column
To use values in a row to calculate and add a new column, use map()
.
This example below converts temperature from Fahrenheit to Celsius and maps the Celsius value to a new celsius
column.
The following query:
- Uses
filter()
to filter theaverage_temperature
measurement. - Uses
map()
to create a new column calculated from existing values in each row.
from(bucket: "noaa")
|> filter(fn: (r) => r._measurement == "average_temperature")
|> range(start: -30d)
|> map(fn: (r) => ({r with celsius: (r._value - 32.0) * 5.0 / 9.0}))
Example results
_start | _stop | _field | _measurement | location | _time | _value | celsius |
---|---|---|---|---|---|---|---|
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:00:00Z | 82 | 27.78 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:06:00Z | 73 | 22.78 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:12:00Z | 86 | 30.00 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:18:00Z | 89 | 31.67 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:24:00Z | 77 | 25.00 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:30:00Z | 70 | 21.11 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:36:00Z | 84 | 28.89 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:42:00Z | 76 | 24.44 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:48:00Z | 85 | 29.44 |
1920-03-05T22:10:01Z | 2020-03-05T22:10:01Z | degrees | average_temperature | coyote_creek | 2019-08-17T00:54:00Z | 80 | 26.67 |
••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• |
Was this page helpful?
Thank you for your feedback!
Support and feedback
Thank you for being part of our community! We welcome and encourage your feedback and bug reports for InfluxDB and this documentation. To find support, use the following resources:
Customers with an annual or support contract can contact InfluxData Support.