Documentation

json.parse() function

json.parse() is experimental and subject to change at any time.

json.parse() takes JSON data as bytes and returns a value.

JSON types are converted to Flux types as follows:

JSON typeFlux type
booleanboolean
numberfloat
stringstring
arrayarray
objectrecord
Function type signature
(data: bytes) => A

For more information, see Function type signatures.

Parameters

data

(Required) JSON data (as bytes) to parse.

Examples

Parse and use JSON data to restructure tables

import "experimental/json"

data
    |> map(
        fn: (r) => {
            jsonData = json.parse(data: bytes(v: r._value))

            return {
                _time: r._time,
                _field: r._field,
                a: jsonData.a,
                b: jsonData.b,
                c: jsonData.c,
            }
        },
    )

View example input and output

Parse JSON and use array functions to manipulate into a table

import "experimental/json"
import "experimental/array"

jsonStr =
    bytes(
        v:
            "{
     \"node\": {
         \"items\": [
             {
                 \"id\": \"15612462\",
                 \"color\": \"red\",
                 \"states\": [
                     {
                         \"name\": \"ready\",
                         \"duration\": 10
                     },
                     {
                         \"name\": \"closed\",
                         \"duration\": 13
                     },
                     {
                         \"name\": \"pending\",
                         \"duration\": 3
                     }
                 ]
             },
             {
                 \"id\": \"15612462\",
                 \"color\": \"blue\",
                 \"states\": [
                     {
                         \"name\": \"ready\",
                         \"duration\": 5
                     },
                     {
                         \"name\": \"closed\",
                         \"duration\": 0
                     },
                     {
                         \"name\": \"pending\",
                         \"duration\": 16
                     }
                 ]
             }
         ]
     }
}",
    )

data = json.parse(data: jsonStr)

// Map over all items in the JSON extracting
// the id, color and pending duration of each.
// Construct a table from the final records.
array.from(
    rows:
        data.node.items
            |> array.map(
                fn: (x) => {
                    pendingState =
                        x.states
                            |> array.filter(fn: (x) => x.name == "pending")
                    pendingDur =
                        if length(arr: pendingState) == 1 then
                            pendingState[0].duration
                        else
                            0.0

                    return {id: x.id, color: x.color, pendingDuration: pendingDur}
                },
            ),
)

View example output


Was this page helpful?

Thank you for your feedback!


New in InfluxDB 3.5

Key enhancements in InfluxDB 3.5 and the InfluxDB 3 Explorer 1.3.

See the Blog Post

InfluxDB 3.5 is now available for both Core and Enterprise, introducing custom plugin repository support, enhanced operational visibility with queryable CLI parameters and manual node management, stronger security controls, and general performance improvements.

InfluxDB 3 Explorer 1.3 brings powerful new capabilities including Dashboards (beta) for saving and organizing your favorite queries, and cache querying for instant access to Last Value and Distinct Value caches—making Explorer a more comprehensive workspace for time series monitoring and analysis.

For more information, check out:

InfluxDB Docker latest tag changing to InfluxDB 3 Core

On November 3, 2025, the latest tag for InfluxDB Docker images will point to InfluxDB 3 Core. To avoid unexpected upgrades, use specific version tags in your Docker deployments.

If using Docker to install and run InfluxDB, the latest tag will point to InfluxDB 3 Core. To avoid unexpected upgrades, use specific version tags in your Docker deployments. For example, if using Docker to run InfluxDB v2, replace the latest version tag with a specific version tag in your Docker pull command–for example:

docker pull influxdb:2