Documentation

json.parse() function

json.parse() is experimental and subject to change at any time.

json.parse() takes JSON data as bytes and returns a value.

JSON types are converted to Flux types as follows:

JSON typeFlux type
booleanboolean
numberfloat
stringstring
arrayarray
objectrecord
Function type signature
(data: bytes) => A
  • Copy
  • Fill window

For more information, see Function type signatures.

Parameters

data

(Required) JSON data (as bytes) to parse.

Examples

Parse and use JSON data to restructure tables

import "experimental/json"

data
    |> map(
        fn: (r) => {
            jsonData = json.parse(data: bytes(v: r._value))

            return {
                _time: r._time,
                _field: r._field,
                a: jsonData.a,
                b: jsonData.b,
                c: jsonData.c,
            }
        },
    )
  • Copy
  • Fill window

View example input and output

Parse JSON and use array functions to manipulate into a table

import "experimental/json"
import "experimental/array"

jsonStr =
    bytes(
        v:
            "{
     \"node\": {
         \"items\": [
             {
                 \"id\": \"15612462\",
                 \"color\": \"red\",
                 \"states\": [
                     {
                         \"name\": \"ready\",
                         \"duration\": 10
                     },
                     {
                         \"name\": \"closed\",
                         \"duration\": 13
                     },
                     {
                         \"name\": \"pending\",
                         \"duration\": 3
                     }
                 ]
             },
             {
                 \"id\": \"15612462\",
                 \"color\": \"blue\",
                 \"states\": [
                     {
                         \"name\": \"ready\",
                         \"duration\": 5
                     },
                     {
                         \"name\": \"closed\",
                         \"duration\": 0
                     },
                     {
                         \"name\": \"pending\",
                         \"duration\": 16
                     }
                 ]
             }
         ]
     }
}",
    )

data = json.parse(data: jsonStr)

// Map over all items in the JSON extracting
// the id, color and pending duration of each.
// Construct a table from the final records.
array.from(
    rows:
        data.node.items
            |> array.map(
                fn: (x) => {
                    pendingState =
                        x.states
                            |> array.filter(fn: (x) => x.name == "pending")
                    pendingDur =
                        if length(arr: pendingState) == 1 then
                            pendingState[0].duration
                        else
                            0.0

                    return {id: x.id, color: x.color, pendingDuration: pendingDur}
                },
            ),
)
  • Copy
  • Fill window

View example output


Was this page helpful?

Thank you for your feedback!


The future of Flux

Flux is going into maintenance mode. You can continue using it as you currently are without any changes to your code.

Read more

InfluxDB 3 Core and Enterprise are now in Beta

InfluxDB 3 Core and Enterprise are now available for beta testing, available under MIT or Apache 2 license.

InfluxDB 3 Core is a high-speed, recent-data engine that collects and processes data in real-time, while persisting it to local disk or object storage. InfluxDB 3 Enterprise is a commercial product that builds on Core’s foundation, adding high availability, read replicas, enhanced security, and data compaction for faster queries. A free tier of InfluxDB 3 Enterprise will also be available for at-home, non-commercial use for hobbyists to get the full historical time series database set of capabilities.

For more information, check out: