Documentation

json.parse() function

json.parse() is experimental and subject to change at any time.

json.parse() takes JSON data as bytes and returns a value.

JSON types are converted to Flux types as follows:

JSON typeFlux type
booleanboolean
numberfloat
stringstring
arrayarray
objectrecord
Function type signature
(data: bytes) => A

For more information, see Function type signatures.

Parameters

data

(Required) JSON data (as bytes) to parse.

Examples

Parse and use JSON data to restructure tables

import "experimental/json"

data
    |> map(
        fn: (r) => {
            jsonData = json.parse(data: bytes(v: r._value))

            return {
                _time: r._time,
                _field: r._field,
                a: jsonData.a,
                b: jsonData.b,
                c: jsonData.c,
            }
        },
    )

View example input and output

Parse JSON and use array functions to manipulate into a table

import "experimental/json"
import "experimental/array"

jsonStr =
    bytes(
        v:
            "{
     \"node\": {
         \"items\": [
             {
                 \"id\": \"15612462\",
                 \"color\": \"red\",
                 \"states\": [
                     {
                         \"name\": \"ready\",
                         \"duration\": 10
                     },
                     {
                         \"name\": \"closed\",
                         \"duration\": 13
                     },
                     {
                         \"name\": \"pending\",
                         \"duration\": 3
                     }
                 ]
             },
             {
                 \"id\": \"15612462\",
                 \"color\": \"blue\",
                 \"states\": [
                     {
                         \"name\": \"ready\",
                         \"duration\": 5
                     },
                     {
                         \"name\": \"closed\",
                         \"duration\": 0
                     },
                     {
                         \"name\": \"pending\",
                         \"duration\": 16
                     }
                 ]
             }
         ]
     }
}",
    )

data = json.parse(data: jsonStr)

// Map over all items in the JSON extracting
// the id, color and pending duration of each.
// Construct a table from the final records.
array.from(
    rows:
        data.node.items
            |> array.map(
                fn: (x) => {
                    pendingState =
                        x.states
                            |> array.filter(fn: (x) => x.name == "pending")
                    pendingDur =
                        if length(arr: pendingState) == 1 then
                            pendingState[0].duration
                        else
                            0.0

                    return {id: x.id, color: x.color, pendingDuration: pendingDur}
                },
            ),
)

View example output


Was this page helpful?

Thank you for your feedback!


New in InfluxDB 3.6

Key enhancements in InfluxDB 3.6 and the InfluxDB 3 Explorer 1.4.

See the Blog Post

InfluxDB 3.6 is now available for both Core and Enterprise. This release introduces the 1.4 update to InfluxDB 3 Explorer, featuring the beta launch of Ask AI, along with new capabilities for simple startup and expanded functionality in the Processing Engine.

For more information, check out:

InfluxDB Docker latest tag changing to InfluxDB 3 Core

On February 3, 2026, the latest tag for InfluxDB Docker images will point to InfluxDB 3 Core. To avoid unexpected upgrades, use specific version tags in your Docker deployments.

If using Docker to install and run InfluxDB, the latest tag will point to InfluxDB 3 Core. To avoid unexpected upgrades, use specific version tags in your Docker deployments. For example, if using Docker to run InfluxDB v2, replace the latest version tag with a specific version tag in your Docker pull command–for example:

docker pull influxdb:2