Documentation

prometheus.histogramQuantile() function

The prometheus.histogramQuantile() function is experimental and subject to change at any time. By using this function, you accept the risks of experimental functions.

The prometheus.histogramQuantile() function calculates quantiles on a set of values assuming the given histogram data is scraped or read from a Prometheus data source. prometheus.histogramQuantile() is an aggregate function.

import "experimental/prometheus"

prometheus.histogramQuantile(
    quantile: 0.99,
    metricVersion: 2,
)

Parameters

quantile

A value between 0.0 and 1.0 indicating the desired quantile.

metricVersion

Prometheus metric parsing format used to parse queried Prometheus data. Available versions are 1 and 2. Default is 2.

tables

Input data. Default is piped-forward data (<-).

Examples

Compute the 0.99 quantile of a Prometheus histogram

import "experimental/prometheus"

prometheus.scrape(url: "http://localhost:8086/metrics")
    |> filter(fn: (r) => r._measurement == "prometheus")
    |> filter(fn: (r) => r._field == "qc_all_duration_seconds")
    |> prometheus.histogramQuantile(quantile: 0.99)

Compute the 0.99 quantile of a Prometheus histogram parsed with metric version 1

import "experimental/prometheus"

from(bucket: "example-bucket")
    |> range(start: -1h)
    |> filter(fn: (r) => r._measurement == "qc_all_duration_seconds")
    |> prometheus.histogramQuantile(quantile: 0.99, metricVersion: 1)

Was this page helpful?

Thank you for your feedback!


Upgrade to InfluxDB Cloud or InfluxDB 2.0!

InfluxDB Cloud and InfluxDB OSS 2.0 ready for production.