Documentation

experimental.kaufmansAMA() function

experimental.kaufmansAMA() is subject to change at any time.

experimental.kaufmansAMA() calculates the Kaufman’s Adaptive Moving Average (KAMA) of input tables using the _value column in each table.

Kaufman’s Adaptive Moving Average is a trend-following indicator designed to account for market noise or volatility.

Function type signature
(<-tables: stream[{A with _value: B}], n: int) => stream[{A with _value: float}] where B: Numeric
For more information, see Function type signatures.

Parameters

n

(Required) Period or number of points to use in the calculation.

tables

Input data. Default is piped-forward data (<-).

Examples

Calculate the KAMA of input tables

import "experimental"
import "sampledata"

sampledata.int()
    |> experimental.kaufmansAMA(n: 3)

View example input and output


Was this page helpful?

Thank you for your feedback!


Upgrade to InfluxDB Cloud or InfluxDB 2.0!

InfluxDB Cloud and InfluxDB OSS 2.0 ready for production.