aggregateWindow() function

The aggregateWindow() function applies an aggregate or selector function (any function with a column parameter) to fixed windows of time.

Function type: Aggregate

  every: 1m,
  fn: mean,
  column: "_value",
  timeColumn: "_stop",
  timeDst: "_time",
  createEmpty: true

As data is windowed into separate tables and processed, the _time column is dropped from each group key. This function copies the timestamp from a remaining column into the _time column. View the function definition.


Make sure fn parameter names match each specified parameter. To learn why, see Match parameter names.


The duration of windows.

Calendar months and years

every supports all valid duration units, including calendar months (1mo) and years (1y).

Data type: Duration


The aggregate function used in the operation.

Data type: Function

Only aggregate and selector functions with a column parameter (singular) work with aggregateWindow().


Columns on which to operate. Defaults to "_value".

Data type: String


The time column from which time is copied for the aggregate record. Defaults to "_stop".

Data type: String


The “time destination” column to which time is copied for the aggregate record. Defaults to "_time".

Data type: String


For windows without data, this will create an empty window and fill it with a null aggregate value. Defaults to true.

Data type: Boolean


The examples below use a data variable to represent a filtered data set.

data = from(bucket: "example-bucket")
  |> range(start: -1h)
  |> filter(fn: (r) =>
    r._measurement == "mem" and
    r._field == "used_percent")
Use an aggregate function with default parameters

The following example uses the default parameters of the mean() function to aggregate time-based windows:

  |> aggregateWindow(
    every: 5m,
    fn: mean
Specify parameters of the aggregate function

To use functions that don’t provide defaults for required parameters with aggregateWindow(), define an anonymous function with column and tables parameters that pipes-forward tables into the aggregate or selector function with all required parameters defined:

  |> aggregateWindow(
    every: 5m,
    fn: (column, tables=<-) => tables |> quantile(q: 0.99, column:column)
Window and aggregate by calendar month
  |> aggregateWindow(every: 1mo, fn: mean)

Function definition

aggregateWindow = (every, fn, columns=["_value"], timeColumn="_stop", timeDst="_time", tables=<-) =>
		|> window(every:every)
		|> fn(column:column)
		|> duplicate(column:timeColumn, as:timeDst)
		|> window(every:inf, timeColumn:timeDst)

InfluxQL aggregate functions
GROUP BY time()

This documentation is open source. See a typo? Please, open an issue.

Need help getting up and running? Get Support