EC2AutoscaleNode (Kapacitor TICKscript node)

Warning! This page documents an earlier version of Kapacitor, which is no longer actively developed. Kapacitor v1.5 is the most recent stable version of Kapacitor.

Constructor

Chaining Method Description
ec2Autoscale ( ) Create a node that can trigger autoscale events for an EC2 Autoscale group.

Property Methods

Setters Description
cluster ( value string) Cluster is the ID of EC2 Autoscale group to use. The ID of the cluster is specified in the kapacitor configuration.
currentField ( value string) CurrentField is the name of a field into which the current replica count will be set as an int. If empty no field will be set. Useful for computing deltas on the current state.
decreaseCooldown ( value time.Duration) Only one decrease event can be triggered per resource every DecreaseCooldown interval.
groupName ( value string) GroupName is the name of the autoscaling group to autoscale.
groupNameTag ( value string) GroupName is the name of a tag which contains the name of the autoscaling group to autoscale.
increaseCooldown ( value time.Duration) Only one increase event can be triggered per resource every IncreaseCooldown interval.
max ( value int64) The maximum scale factor to set. If 0 then there is no upper limit. Default: 0, a.k.a no limit.
min ( value int64) The minimum scale factor to set. Default: 1
outputGroupNameTag ( value string) OutputGroupName is the name of a tag into which the group name will be written for output autoscale events. Defaults to the value of GroupNameTag if its not empty.
replicas ( value ast.LambdaNode) Replicas is a lambda expression that should evaluate to the desired number of replicas for the resource.

Chaining Methods

Alert, Barrier, Bottom, Combine, Count, CumulativeSum, Deadman, Default, Delete, Derivative, Difference, Distinct, Ec2Autoscale, Elapsed, Eval, First, Flatten, GroupBy, HoltWinters, HoltWintersWithFit, HttpOut, HttpPost, InfluxDBOut, Join, K8sAutoscale, KapacitorLoopback, Last, Log, Mean, Median, Mode, MovingAverage, Percentile, Sample, Shift, Sideload, Spread, StateCount, StateDuration, Stats, Stddev, Sum, SwarmAutoscale, Top, Union, Where, Window



Description

EC2AutoscaleNode triggers autoscale events on an AWS Autoscaling group. The node also outputs points for the triggered events.

Example:

     // Target 80% cpu per ec2 instance
     var target = 80.0
     var min = 1
     var max = 10
     var period = 5m
     var every = period
     stream
         |from()
             .measurement('cpu')
             .groupBy('host_name','group_name')
             .where(lambda: "cpu" == 'cpu-total')
         |eval(lambda: 100.0 - "usage_idle")
             .as('usage_percent')
         |window()
             .period(period)
             .every(every)
         |mean('usage_percent')
             .as('mean_cpu')
         |groupBy('group_name')
         |sum('mean_cpu')
             .as('total_cpu')
         |ec2Autoscale()
             // Get the group name of the VM(EC2 instance) from "group_name" tag.
             .groupNameTag('group_name')
             .min(min)
             .max(max)
             // Set the desired number of replicas based on target.
             .replicas(lambda: int(ceil("total_cpu" / target)))
         |influxDBOut()
             .database('deployments')
             .measurement('scale_events')
             .precision('s')

The above example computes the mean of CPU usage_percent by host_name name and group_name. Then sum of mean cpu_usage is calculated as total_cpu. Using the total_cpu over the last time period, a desired number of replicas is computed based on the target percentage usage of CPU.

If the desired number of replicas has changed, Kapacitor makes the appropriate API call to AWS autoscaling group to update the replicas spec.

Any time the Ec2Autoscale node changes a replica count, it emits a point. The point is tagged with the group name, using the groupName respectively In addition the group by tags will be preserved on the emitted point. The point contains two fields: old, and new representing change in the replicas.

Available Statistics:

  • increase_events: number of times the replica count was increased.
  • decrease_events: number of times the replica count was decreased.
  • cooldown_drops: number of times an event was dropped because of a cooldown timer.
  • errors: number of errors encountered, typically related to communicating with the AWS autoscaling API.

Properties

Property methods modify state on the calling node. They do not add another node to the pipeline, and always return a reference to the calling node. Property methods are marked using the . operator.

cluster

Cluster is the ID of the EC2 autoscale group to use. The ID of the cluster is specified in the Capacitor configuration.

ec2Autoscale.cluster(value string)

currentField

CurrentField is the name of a field into which the current replica count will be set as an int. If empty no field will be set. Useful for computing deltas on the current state.

Example:

    |ec2Autoscale()
        .currentField('replicas')
        // Increase the replicas by 1 if the qps is over the threshold
        .replicas(lambda: if("qps" > threshold, "replicas" + 1, "replicas"))
ec2Autoscale.currentField(value string)

decreaseCooldown

Only one decrease event can be triggered per resource every DecreaseCooldown interval.

ec2Autoscale.decreaseCooldown(value time.Duration)

groupName

GroupName is the name of the autoscaling group to autoscale.

ec2Autoscale.groupName(value string)

groupNameTag

GroupName is the name of a tag which contains the name of the autoscaling group to autoscale.

ec2Autoscale.groupNameTag(value string)

increaseCooldown

Only one increase event can be triggered per resource every IncreaseCooldown interval.

ec2Autoscale.increaseCooldown(value time.Duration)

max

The maximum scale factor to set. If 0 then there is no upper limit. Default: 0, a.k.a no limit.

ec2Autoscale.max(value int64)

min

The minimum scale factor to set. Default: 1

ec2Autoscale.min(value int64)

outputGroupNameTag

OutputGroupName is the name of a tag into which the group name will be written for output autoscale events. Defaults to the value of GroupNameTag if its not empty.

ec2Autoscale.outputGroupNameTag(value string)

replicas

Replicas is a lambda expression that should evaluate to the desired number of replicas for the resource.

ec2Autoscale.replicas(value ast.LambdaNode)

Chaining methods

Chaining methods create a new node in the pipeline as a child of the calling node. They do not modify the calling node. Chaining methods are marked using the | operator.

alert

Create an alert node, which can trigger alerts.

ec2Autoscale|alert()

Returns: AlertNode

barrier

Create a new Barrier node that emits a BarrierMessage periodically

One BarrierMessage will be emitted every period duration

ec2Autoscale|barrier()

Returns: BarrierNode

bottom

Select the bottom num points for field and sort by any extra tags or fields.

ec2Autoscale|bottom(num int64, field string, fieldsAndTags ...string)

Returns: InfluxQLNode

combine

Combine this node with itself. The data are combined on timestamp.

ec2Autoscale|combine(expressions ...ast.LambdaNode)

Returns: CombineNode

count

Count the number of points.

ec2Autoscale|count(field string)

Returns: InfluxQLNode

cumulativeSum

Compute a cumulative sum of each point that is received. A point is emitted for every point collected.

ec2Autoscale|cumulativeSum(field string)

Returns: InfluxQLNode

deadman

Helper function for creating an alert on low throughput, a.k.a. deadman’s switch.

  • Threshold – trigger alert if throughput drops below threshold in points/interval.
  • Interval – how often to check the throughput.
  • Expressions – optional list of expressions to also evaluate. Useful for time of day alerting.

Example:

    var data = stream
        |from()...
    // Trigger critical alert if the throughput drops below 100 points per 10s and checked every 10s.
    data
        |deadman(100.0, 10s)
    //Do normal processing of data
    data...

The above is equivalent to this.

Example:

    var data = stream
        |from()...
    // Trigger critical alert if the throughput drops below 100 points per 10s and checked every 10s.
    data
        |stats(10s)
            .align()
        |derivative('emitted')
            .unit(10s)
            .nonNegative()
        |alert()
            .id('node \'stream0\' in task \'{{ .TaskName }}\'')
            .message('{{ .ID }} is {{ if eq .Level "OK" }}alive{{ else }}dead{{ end }}: {{ index .Fields "emitted" | printf "%0.3f" }} points/10s.')
            .crit(lambda: "emitted" <= 100.0)
    //Do normal processing of data
    data...

The id and message alert properties can be configured globally via the ‘deadman’ configuration section.

Since the AlertNode is the last piece, it can be further modified as usual. Example:

    var data = stream
        |from()...
    // Trigger critical alert if the throughput drops below 100 points per 10s and checked every 10s.
    data
        |deadman(100.0, 10s)
            .slack()
            .channel('#dead_tasks')
    //Do normal processing of data
    data...

You can specify additional lambda expressions to further constrain when the Deadman’s switch is triggered.

Example:

    var data = stream
        |from()...
    // Trigger critical alert if the throughput drops below 100 points per 10s and checked every 10s.
    // Only trigger the alert if the time of day is between 8am-5pm.
    data
        |deadman(100.0, 10s, lambda: hour("time") >= 8 AND hour("time") <= 17)
    //Do normal processing of data
    data...
ec2Autoscale|deadman(threshold float64, interval time.Duration, expr ...ast.LambdaNode)

Returns: AlertNode

default

Create a node that can set defaults for missing tags or fields.

ec2Autoscale|default()

Returns: DefaultNode

delete

Create a node that can delete tags or fields.

ec2Autoscale|delete()

Returns: DeleteNode

derivative

Create a new node that computes the derivative of adjacent points.

ec2Autoscale|derivative(field string)

Returns: DerivativeNode

difference

Compute the difference between points independent of elapsed time.

ec2Autoscale|difference(field string)

Returns: InfluxQLNode

distinct

Produce batch of only the distinct points.

ec2Autoscale|distinct(field string)

Returns: InfluxQLNode

ec2Autoscale

Create a node that can trigger autoscale events for a ec2 autoscalegroup.

ec2Autoscale|ec2Autoscale()

Returns: Ec2AutoscaleNode

elapsed

Compute the elapsed time between points.

ec2Autoscale|elapsed(field string, unit time.Duration)

Returns: InfluxQLNode

eval

Create a node that will evaluate the given transformation function to each data point. A list of expressions may be provided and will be evaluated in the order they are given. The results are available to later expressions.

ec2Autoscale|eval(expressions ...ast.LambdaNode)

Returns: EvalNode

first

Select the first point.

ec2Autoscale|first(field string)

Returns: InfluxQLNode

flatten

Flatten points with similar times into a single point.

ec2Autoscale|flatten()

Returns: FlattenNode

groupBy

Group the data by a set of tags.

Can pass literal * to group by all dimensions. Example:

    |groupBy(*)
ec2Autoscale|groupBy(tag ...interface{})

Returns: GroupByNode

holtWinters

Compute the holt-winters (https://docs.influxdata.com/influxdb/latest/query_language/functions/#holt-winters) forecast of a data set.

ec2Autoscale|holtWinters(field string, h int64, m int64, interval time.Duration)

Returns: InfluxQLNode

holtWintersWithFit

Compute the holt-winters (https://docs.influxdata.com/influxdb/latest/query_language/functions/#holt-winters) forecast of a data set. This method also outputs all the points used to fit the data in addition to the forecasted data.

ec2Autoscale|holtWintersWithFit(field string, h int64, m int64, interval time.Duration)

Returns: InfluxQLNode

httpOut

Create an HTTP output node that caches the most recent data it has received. The cached data are available at the given endpoint. The endpoint is the relative path from the API endpoint of the running task. For example, if the task endpoint is at /kapacitor/v1/tasks/<task_id> and endpoint is top10, then the data can be requested from /kapacitor/v1/tasks/<task_id>/top10.

ec2Autoscale|httpOut(endpoint string)

Returns: HTTPOutNode

httpPost

Creates an HTTP POST node that POSTS received data to the provided HTTP endpoint. HttpPost expects 0 or 1 arguments. If 0 arguments are provided, you must specify an endpoint property method.

ec2Autoscale|httpPost(url ...string)

Returns: HTTPPostNode

influxDBOut

Create an InfluxDB output node that will store the incoming data into InfluxDB.

ec2Autoscale|influxDBOut()

Returns: InfluxDBOutNode

join

Join this node with other nodes. The data are joined on timestamp.

ec2Autoscale|join(others ...Node)

Returns: JoinNode

k8sAutoscale

Create a node that can trigger autoscale events for a Kubernetes cluster.

ec2Autoscale|k8sAutoscale()

Returns: K8sAutoscaleNode

kapacitorLoopback

Create a Kapacitor loopback node that will send data back into Kapacitor as a stream.

ec2Autoscale|kapacitorLoopback()

Returns: KapacitorLoopbackNode

last

Select the last point.

ec2Autoscale|last(field string)

Returns: InfluxQLNode

log

Create a node that logs all data it receives.

ec2Autoscale|log()

Returns: LogNode

mean

Compute the mean of the data.

ec2Autoscale|mean(field string)

Returns: InfluxQLNode

median

Compute the median of the data. Note, this method is not a selector – if you want the median point, use .percentile(field, 50.0).

ec2Autoscale|median(field string)

Returns: InfluxQLNode

mode

Compute the mode of the data.

ec2Autoscale|mode(field string)

Returns: InfluxQLNode

movingAverage

Compute a moving average of the last window points. No points are emitted until the window is full.

ec2Autoscale|movingAverage(field string, window int64)

Returns: InfluxQLNode

percentile

Select a point at the given percentile. This is a selector function, no interpolation between points is performed.

ec2Autoscale|percentile(field string, percentile float64)

Returns: InfluxQLNode

sample

Create a new node that samples the incoming points or batches.

One point will be emitted every count or duration specified.

ec2Autoscale|sample(rate interface{})

Returns: SampleNode

shift

Create a node that shifts the incoming points or batches in time.

ec2Autoscale|shift(shift time.Duration)

Returns: ShiftNode

sideload

Create a node that can load data from external sources

ec2Autoscale|sideload()

Returns: SideloadNode

spread

Compute the difference between min and max points.

ec2Autoscale|spread(field string)

Returns: InfluxQLNode

stateCount

Create a node that tracks number of consecutive points in a given state.

ec2Autoscale|stateCount(expression ast.LambdaNode)

Returns: StateCountNode

stateDuration

Create a node that tracks duration in a given state.

ec2Autoscale|stateDuration(expression ast.LambdaNode)

Returns: StateDurationNode

stats

Create a stream of data that contains the internal statistics of the node. The interval represents how often to emit the statistics based on real time. This means the interval time is independent of the times of the data points the source node is receiving.

ec2Autoscale|stats(interval time.Duration)

Returns: StatsNode

stddev

Compute the standard deviation.

ec2Autoscale|stddev(field string)

Returns: InfluxQLNode

sum

Compute the sum of all values.

ec2Autoscale|sum(field string)

Returns: InfluxQLNode

swarmAutoscale

Create a node that can trigger autoscale events for a docker swarm cluster.

ec2Autoscale|swarmAutoscale()

Returns: SwarmAutoscaleNode

top

Select the top num points for field and sort by any extra tags or fields.

ec2Autoscale|top(num int64, field string, fieldsAndTags ...string)

Returns: InfluxQLNode

union

Perform the union of this node and all other given nodes.

ec2Autoscale|union(node ...Node)

Returns: UnionNode

where

Create a node that filters the data stream by a given expression.

ec2Autoscale|where(expression ast.LambdaNode)

Returns: WhereNode

window

Create a new node that windows the stream by time.

NOTE: Window can only be applied to stream edges.

ec2Autoscale|window()

Returns: WindowNode